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Application of FFT: Communications

Frequency Division Multiplexing (FDM)

Signal 1

Signal 2

Signal 3

300 - 3400 Hz 10 20 kHz

10 20 kHz

Protection Bands

https://commons.wikimedia.org/w/index.php?curid=18327256
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Application of FFT: Communications

Orthogonal Frequency Division Multiplexing (OFDM)

Transmitter:

Receiver:

Technology behind most digital wireless communication!
(WiFi, 4G, 5G, HD Radio, HDTV)
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The Fast Fourier Transform (FFT)
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Naı̈ve DFT Algorithm

Recall the DFT equation:

X[k] =
1√
L

L−1∑
n=0

e−iω0nkx[n]

Naı̈ve DFT Algorithm
Loop over k = 0, . . . , L− 1

Compute X[k] by sum (loop) over n = 0, . . . , L− 1

Complexity is O(L2)
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Fast Fourier Transform

Cooley-Tukey Algorithm

L

L

Divide-and-Conquer

Radix-2 version:
1 compute “even” DFT
2 compute “odd” DFT
3 combine and reuse results

Recursively apply to each L/2
block

Complexity is O(L logL)
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Fast Fourier Transform

• More general radix-p FFT breaks the DFT into p blocks,
where p is a prime factor of the signal length L

• Recursively applied to each L/p block
• Recursion stops when the remaining block lengths are

prime numbers (can’t be factored any further)
• Bottom line: The FFT is most efficient when the input

signal length has small prime factors, preferrably L is a
power of 2.

• Sometimes it is more efficient to pad a signal with zeros to
get a good prime factorization.
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First Half of FFT
Compute X[k] for k = 0, 1, . . . , L

2
− 1,

X[k] =
1√
L

L−1∑
n=0

e−iω0nkx[n]

=
1√
L

L/2−1∑
m=0

e−iω02mkx[2m] +
1√
L

L/2−1∑
m=0

e−iω0(2m+1)kx[2m+ 1]

=
1√
L

L/2−1∑
m=0

e−iω02mkx[2m]︸ ︷︷ ︸
E[k]=sum of even terms

+e−iω0k
1√
L

L/2−1∑
m=0

e−iω02mkx[2m+ 1]︸ ︷︷ ︸
O[k]=sum of odd terms

= E[k] + e−iω0kO[k]
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Second Half of FFT

Compute X[k + L
2
] for k = 0, 1, . . . , L

2
− 1,

X

[
k +

L

2

]
=

1√
L

L/2−1∑
m=0

e−iω02m(k+L
2
)x[2m]+

+ e−iω0(k+
L
2
) 1√

L

L/2−1∑
m=0

e−iω02m(k+L
2
)x[2m+ 1]

= E[k]− e−iω0kO[k]

Using e−iω02m(k+L
2
) = e−iω02mk and e−iω0(k+

L
2
) = −e−iω0k
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Second Half of FFT

Compute X[k + L
2
] for k = 0, 1, . . . , L

2
− 1,

X

[
k +

L

2

]
=

1√
L

L/2−1∑
m=0

e−iω02m(k+L
2
)x[2m]+

+ e−iω0(k+
L
2
) 1√

L

L/2−1∑
m=0

e−iω02m(k+L
2
)x[2m+ 1]

= E[k]− e−iω0kO[k] Reused!

Using e−iω02m(k+L
2
) = e−iω02mk and e−iω0(k+

L
2
) = −e−iω0k
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FFT Historical Trivia

• FFT actually invented by Gauss in 1805! (but lost)
• Re-invented by Cooley and Tukey in 1965
• Tukey coined the term “bit” (for “binary digit”) and was first

to use the term “software” in writing

Carl Friedrich Gauss John Tukey
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The Short-Time Fourier Transform (STFT)
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STFT Procedure
Multiply signal x[n] by a sliding window w[n] and take FFT.

x[n]

X[k,m]

time

fr
e
q
u
e
n
cy
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STFT Procedure
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STFT Definition

The STFT of a signal, x[n], is a function of frequency, k, and
time, m, given by:

X[k,m] =
1√
W

W−1∑
n=0

x[n+mh]w[n]e−
i2πkn
W ,

where W is the window length, h is the hop length.
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STFT Pseudocode

x = input signal

w = window function

h = hop length

H = number of hops

X = output STFT

for m = 0 .. H

x_clip = x[m*h : m*h + len(w)]

X[:, m] = FFT(x_clip * w)
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Overlap-Add (OLA)

We can reconstruct a signal x[n] from its STFT, X[k,m], using a
method called Overlap-Add (OLA):

1 Compute the inverse fast Fourier transform on each column
of X[k,m] to get

s[n,m] = DFT −1(X[k,m])

2 Scale s by a window, w[n], and sum over m:

x̃[n] =
∑
m

s[n−mh,m]w[n−mh],

where h is the hop length used to compute X[k,m], and the
range of the summation is

⌈
1−W+n

h

⌉
≤ m ≤

⌊
n
h

⌋
.
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Pseudocode for OLA

X = STFT

w = window function

x = output signal

initialize x[n] = 0 for all n

for m = 0 .. H

s = IFFT(X[:, m]

x[m*h : m*h + len(w)] += s * w
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Perfect Reconstruction Conditions

The x̃[n] resulting from OLA is a reconstruction of x[n], but are
they equal?

Yes, if window satisfies the constant overlap-add (COLA)
condition: ∑

m

w[n−mh]2 = 1

Note: We can also apply two different windows wf [n] and wb[n]
during forward STFT and backward OLA, respectively. Then the
condition is that

∑
m wf [n−mh]wb[n−mh] = 1.
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Perfect Reconstruction Conditions

First, we have

s[n,m] = DFT −1{X[k,m]}
= DFT −1 {DFT {x[n+mh]w[n]}} ,
= x[n+mh]w[n]
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Perfect Reconstruction Conditions

So, assuming w[n] is COLA:

x̃[n] =
∑
m

s[n−mh,m]w[n−mh]

=
∑
m

(x[n]w[n−mh])w[n−mh]

= x[n]
∑
m

w[n−mh]2︸ ︷︷ ︸
=1 if COLA

= x[n]
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