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Brain Teaser: Trick Coin

I have four coins. Three are normal, one side heads, one
side tails. One is a trick coin where both sides are
heads. I pick one coin at random and flip it. If it shows
heads, what is the probability that it is the trick coin?



Bayes’ Rule

Let’s us “flip” a conditional:

P(B | A) =
P(A | B)P(B)

P(A)



Deriving Bayes’ Rule
Multiplication rule:

P(A ∩ B) = P(A | B)P(B)

P(B ∩ A) = P(B | A)P(A)

But these two equations are equal, so:

P(B | A)P(A) = P(A | B)P(B)

Dividing both sides by P(A) gives us:

P(B | A) =
P(A | B)P(B)

P(A)



Trick Coin Example
A = “heads”, B = “trick coin”
P(A | B) = 1.0
P(B) = 0.25

P(A) = P(A | B)P(B) + P(A | Bc)P(Bc)

= 1.0× 0.25 + 0.5× 0.75 =
5
8

P(B | A) =
P(A | B)P(B)

P(A)
=

1.0× 0.25
5/8

=
2
5

= 0.4



Random Variables

Definition
A random variable is a function defined on a sample
space, Ω. Notation: X : Ω→ R

I A random variable is neither random nor a variable.
I Just think of a random variable as assigning a

number to every possible outcome.
I For example, in a coin flip, we might assign “tails”

as 0 and “heads” as 1:

X(T) = 0, X(H) = 1



Dice Example

Let (Ω,F ,P) be the probability space for rolling a pair of
dice, and let X be the random variable that gives the
sum of the numbers on the two dice. So,

X[(1, 2)] = 3, X[(4, 4)] = 8, X[(6, 5)] = 11



Even Simpler Example

Most of the time the random variable X will just be the
identity function. For example, if the sample space is the
real line, Ω = R, the identity function

X : R→ R,
X(s) = s

is a random variable.



Defining Events via Random Variables

Setting a real-valued random variable to a value or range
of values defines an event.

[X = x] = {s ∈ Ω : X(s) = x}
[X < x] = {s ∈ Ω : X(s) < x}

[a < X < b] = {s ∈ Ω : a < X(s) < b}



Joint Probabilities
Two binary random variables:
C = cold / no cold = (1/0)
R = runny nose / no runny nose = (1/0)

Event [C = 1]: “I have a cold”
Event [R = 1]: “I have a runny nose”

Joint event
[C = 1] ∩ [R = 1]: “I have a cold and a runny nose”

Notation for joint probabilities:

P(C = 1,R = 1) = P([C = 1] ∩ [R = 1])



Cold Example: Probability Tables

Two binary random variables:
C = cold / no cold = (1/0)
R = runny nose / no runny nose = (1/0)

Joint probabilities:

C
0 1

R
0 0.50 0.05

1 0.20 0.25



Cold Example: Marginals

C
0 1

R
0 0.50 0.05

1 0.20 0.25

Marginals:

P(R = 0) = 0.55, P(R = 1) = 0.45

P(C = 0) = 0.70, P(C = 1) = 0.30



Cold Example: Conditional Probabilities

C
0 1

R
0 0.50 0.05 0.55

1 0.20 0.25 0.45

0.7 0.3

Conditional Probabilities:

P(C = 0 | R = 0) =
P(C = 0,R = 0)

P(R = 0)
=

0.50
0.55

≈ 0.91

P(C = 1 | R = 1) =
P(C = 1,R = 1)

P(R = 1)
=

0.25
0.45

≈ 0.56



Cold Example
C

0 1

R
0 0.50 0.05 0.55

1 0.20 0.25 0.45

0.7 0.3

Remember:
P(C) = 0.3
P(C |R) = 0.56

What if I didn’t give you the full table, but just:

P(R | C) = 0.83 > P(R) = 0.45

What can you say about the increase
P(C | R) > P(C)?



Cold Example
Notice, having a cold increases my chance for a runny
nose by the factor,

P(R | C)

P(R)
=

0.83
0.45

= 1.85

How does such a ratio increase if I flip the conditional?

P(C | R)

P(C)
=

P(C ∩ R)

P(R)P(C)

=
P(R | C)

P(R)

= 1.85


