Bayes' Rule

Foundations of Data Analysis

February 3, 2022

Brain Teaser: Trick Coin

I have four coins. Three are normal, one side heads, one side tails. One is a trick coin where both sides are heads. I pick one coin at random and flip it. If it shows heads, what is the probability that it is the trick coin?

Bayes' Rule

Let's us "flip" a conditional:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Deriving Bayes' Rule

Multiplication rule:

$$
\begin{aligned}
& P(A \cap B)=P(A \mid B) P(B) \\
& P(B \cap A)=P(B \mid A) P(A)
\end{aligned}
$$

But these two equations are equal, so:

$$
P(B \mid A) P(A)=P(A \mid B) P(B)
$$

Dividing both sides by $P(A)$ gives us:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Trick Coin Example

$A=$ "heads", $B=$ "trick coin"

$$
\begin{aligned}
& P(A \mid B)=1.0 \\
& P(B)=0.25
\end{aligned}
$$

$$
\begin{aligned}
P(A) & =P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right) \\
& =1.0 \times 0.25+0.5 \times 0.75=\frac{5}{8}
\end{aligned}
$$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{1.0 \times 0.25}{5 / 8}=\frac{2}{5}=0.4
$$

Random Variables

Definition

A random variable is a function defined on a sample space, Ω. Notation: $X: \Omega \rightarrow \mathbb{R}$

- A random variable is neither random nor a variable.
- Just think of a random variable as assigning a number to every possible outcome.
- For example, in a coin flip, we might assign "tails" as 0 and "heads" as 1:

$$
X(T)=0, \quad X(H)=1
$$

Dice Example

Let (Ω, \mathcal{F}, P) be the probability space for rolling a pair of dice, and let X be the random variable that gives the sum of the numbers on the two dice. So,

$$
X[(1,2)]=3, \quad X[(4,4)]=8, \quad X[(6,5)]=11
$$

Even Simpler Example

Most of the time the random variable X will just be the identity function. For example, if the sample space is the real line, $\Omega=\mathbb{R}$, the identity function

$$
\begin{aligned}
& X: \mathbb{R} \rightarrow \mathbb{R}, \\
& X(s)=s
\end{aligned}
$$

is a random variable.

Defining Events via Random Variables

Setting a real-valued random variable to a value or range of values defines an event.

$$
\begin{aligned}
{[X=x] } & =\{s \in \Omega: X(s)=x\} \\
{[X<x] } & =\{s \in \Omega: X(s)<x\} \\
{[a<X<b] } & =\{s \in \Omega: a<X(s)<b\}
\end{aligned}
$$

Joint Probabilities

Two binary random variables:
$C=$ cold $/$ no cold $=(1 / 0)$
$R=$ runny nose $/$ no runny nose $=(1 / 0)$
Event $[C=1]$: "I have a cold"
Event $[R=1]$: "I have a runny nose"
Joint event
$[C=1] \cap[R=1]$: "I have a cold and a runny nose"
Notation for joint probabilities:

$$
P(C=1, R=1)=P([C=1] \cap[R=1])
$$

Cold Example: Probability Tables

Two binary random variables:
$C=$ cold $/$ no cold $=(1 / 0)$
$R=$ runny nose $/$ no runny nose $=(1 / 0)$
Joint probabilities:

Cold Example: Marginals

Marginals:

$$
\begin{array}{ll}
P(R=0)=0.55, & P(R=1)=0.45 \\
P(C=0)=0.70, & P(C=1)=0.30
\end{array}
$$

Cold Example: Conditional Probabilities

Conditional Probabilities:

$$
\begin{aligned}
& P(C=0 \mid R=0)=\frac{P(C=0, R=0)}{P(R=0)}=\frac{0.50}{0.55} \approx 0.91 \\
& P(C=1 \mid R=1)=\frac{P(C=1, R=1)}{P(R=1)}=\frac{0.25}{0.45} \approx 0.56
\end{aligned}
$$

Cold Example

Remember:

$$
P(C)=0.3
$$

$$
P(C \mid R)=0.56
$$

$0.7 \quad 0.3$
What if I didn't give you the full table, but just:

$$
P(R \mid C)=0.83 \quad>\quad P(R)=0.45
$$

What can you say about the increase

$$
P(C \mid R)>P(C) ?
$$

Cold Example

Notice, having a cold increases my chance for a runny nose by the factor,

$$
\frac{P(R \mid C)}{P(R)}=\frac{0.83}{0.45}=1.85
$$

How does such a ratio increase if I flip the conditional?

$$
\begin{aligned}
\frac{P(C \mid R)}{P(C)} & =\frac{P(C \cap R)}{P(R) P(C)} \\
& =\frac{P(R \mid C)}{P(R)} \\
& =1.85
\end{aligned}
$$

