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Brain Teaser

You have two black socks, two white socks, two red
socks, and two blue socks in your sock drawer. If you
pick two socks out at random (without looking!), what is
the probability that they match?



Irises

iris virginica iris versicolor iris setosa



Classification
Say we want to automatically identify an iris species
based on its petal and sepal length measurements.

This is a famous data set in machine learning / statistics,
from Ronald Fisher in 1936!



A Classifier is a Decision Rule
x = “petal length”, c = “species”

if x < 2.5 : c = ’setosa’
if 2.5 < x < 4.7 : c = ’versicolor’

if x > 4.7 : c = ’virginica’



Classification Task

Training:
Learn a decision rule, based on training data, to predict
a class C from features X.

Testing:
Use trained classifier to predict unknown class C∗ from
features of new testing data, X∗.

Important! Training and testing data should be
completely separate!



Probabilistic Classifier
Features X and class C are random variables.

Learn a probability distribution from the training data:

P(C | X)

Imaginary Example:
An iris test point X∗ might give something like this:

C∗ setosa versicolor virginica

P(C∗ | X∗) 0.80 0.15 0.05



Bayes’ Rule for Classification

P(C | X) = P(X | C)P(C)

P(X)

P(X | C) Likelihood - learned from data

P(C) Prior - determined beforehand

P(X) Evidence - not needed for decision



Naı̈ve Bayes

Multidimensional features X = (X1,X2, . . . ,Xd)

“Naı̈ve” Assumption:
Assume features Xi are independent, given the class C:

P(X | C) = P(X1 | C)× P(X2 | C)× · · · × P(Xd | C)



Gaussian or Normal Distribution

Probability density function (pdf):

p(x;µ, σ2) =
1√
2πσ

exp

(
−(x− µ)

2

2σ2

)
Notation: x ∼ N(µ, σ2)
Mean, µ, and variance, σ2, are parameters.
See https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution


Gaussian µ Parameter

Shifts the pdf, shape stays the same



Gaussian σ Parameter

Stretches/shrinks the pdf, position stays the same



Probabilities of Continuous Random
Variables

Probability is given by area under the pdf:

P(a < X < b) =
∫ b

a
p(x)dx



Gaussian Area

Units of horizontal axis are σ



Gaussian Area

Units of horizontal axis are σ



Gaussian Area

Units of horizontal axis are σ



Gaussian Naı̈ve Bayes

Likelihood is Gaussian pdf:

p(x | C = ck) =
1√

2πσk
exp

(
−(x− µk)

2

2σ2
k

)
I The Gaussian depends on the class

C ∈ {c1, c2, . . . , cK}
I Each class needs a mean, µk, and a variance, σ2

k



How to “Train” a Gaussian Distribution

For each feature in your data, given training data:
x1, x2, . . . , xn all from the kth class

Set parameters:
Mean: µ̂k =

1
n

∑n
i=1 xi

Variance: σ̂2
k = 1

n−1

∑n
i=1(xi − µ̂k)

2



Evidence Calculation

If we have K classes C ∈ {c1, c2, . . . , cK}:

p(x) =
K∑

k=1

p(X | C = ck)P(C = ck),

using Total Probability.

For the case that we have two classes:

p(x) = p(x | C = c1)P(C = c1) + p(x | C = c2)P(C = c2)



Choosing a Prior

How to set P(C = ck)?
I Equally likely: P(C = ck) =

1
K

I Frequency of classes in training data
I Derive from previous experiments or knowledge



Putting It All Together

I Pick a prior: P(C = ck)

I Train your Gaussians on training data: µk, σ
2
k

I For each test data point, x∗ = (x∗1, x
∗
2, . . . , x

∗
d),

compute the likelihood:

p(x∗ | C = ck) = p(x∗1 | C = ck)×p(x∗2 | C = ck)×· · ·×p(x∗d | C = ck)

I Compute the class probabilities:

P(C = ck | x∗) =
p(x∗ | C = ck)P(C = ck)

p(x∗)

I Classify x∗ as the class ck with highest probability


