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CIFAR-10

32× 32× 3 = 3,072 dimensions
10 classes



Uniform Random Images

just kidding!



Manifold Hypothesis
Real data lie near lower-dimensional manifolds

M



Area of a Shrunken Square

ε

 (0,0)

(1,1)(0,1)

(1,0)

What is the volume of the unit
square shrunk by some small
amount in each dimension?

A = (1− 2ε)2

Example: ε = 1
256

A ≈ 0.9844



Volume in High Dimensions

ε

(0,0,...,0)

(1,1,...,1)
What is the volume of the unit
d-cube shrunk by some small
amount in each dimension?

V = (1− 2ε)d

Approaches 0 as d →∞

Example: 256× 256× 3 images, ε = 1
256

V ≈ 2.0× 10−670



Algebra

StatisticsGeometry



Types of Data

I Categorical (outcomes come from a discrete set)
I Real-valued (outcomes come from R)
I Ordinal (outcomes have an order, e.g., integers)
I Vector (outcomes come from Rd)

Most data is a combination of multiple types!



Vectors

A vector is a list of real numbers:

x =


x1

x2

...
xd


Notation: x ∈ Rd

Notation: We will use superscripts for coordinates,
subscripts when talking about a collection of vectors,
x1, x2, . . . , xn ∈ Rd.



Geometry: Direction and Distance

A vector is the difference between two points:

x

x

1

2

a

b

a =


a1

a2

...
ad

 , b =


b1

b2

...
bd

 ,

x =


x1

x2

...
xd

 =


b1 − a1

b2 − a2

...
bd − ad





Geometry: Direction and Distance

A vector is the difference between two points:

x

x

1

2

a

b
x

a =


a1

a2

...
ad

 , b =


b1

b2

...
bd

 ,

x =


x1

x2

...
xd

 =


b1 − a1

b2 − a2

...
bd − ad





Points as Vectors

x

x

1

2

x

We will often treat points as vectors, although they are
technically not the same thing.

Think of a vector being anchored at the origin: 0 =


0
0
...
0





Vector Addition

x

x

1

2

x

y
x + y =


x1 + y1

x2 + y2

...
xd + yd





Vector Addition

x

x

1

2

x

y
x + y =


x1 + y1

x2 + y2

...
xd + yd





Vector Addition

x

x

1

2

x

y
x+y x + y =


x1 + y1

x2 + y2

...
xd + yd





Scalar Multiplication

Multiplication between a vector x ∈ Rd and a scalar
s ∈ R:

sx = s


x1

x2

...
xd

 =


sx1

sx2

...
sxd





Statistics: Vector Mean

Given vector data x1, x2, . . . , xn ∈ Rd, the mean is

x̄ =
1
n

n∑
i=1

xi =


1
n

∑n
i=1 x1

i
1
n

∑n
i=1 x2

i
...

1
n

∑n
i=1 xd

i


Notice that this is a vector of means in each dimension.



Vector Norm

The norm of a vector is its length:

‖x‖ =

√√√√ d∑
i=1

(xi)2



Statistics: Total Variance

Remember, the equation for the variance of scalar data,
y1, . . . , yn ∈ R:

var(y) =
1

n− 1

n∑
i=1

(yi − ȳ)2.

For total variance for vector data, x1, . . . , xn ∈ Rd, is

var(x) =
1

n− 1

n∑
i=1

‖xi − x̄‖2.



Dot Product

Given two vectors, x, y ∈ Rd, their dot product is

〈x, y〉 = x1y1 + x2y2 + · · ·+ xdyd =
d∑

i=1

xiyi.

Also known as the inner product.

Relation to norm:

‖x‖ =
√
〈x, x〉



Geometry: Angles and Lengths

The dot product tells us the angle θ between two
vectors, x, y ∈ Rd:

x

x

1

2

x

y

� 〈x, y〉 = ‖x‖‖y‖ cos θ.

Or, rewriting to solve for θ: θ = arccos 〈x,y〉
‖x‖‖y‖ .



Geometry: Orthogonality

Two vectors at a 90 degree angle (π/2 radians) are
called orthogonal.
There dot product is zero:

〈x, y〉 = ‖x‖‖y‖ cos
π

2
= ‖x‖‖y‖0 = 0



Geometry: Projection

x

x

1

2

x

y

z

z =
x
‖x‖2 〈x, y〉



Equation for a Line

Line passing through the origin along vector x ∈ Rd

L = {tx : t ∈ R}

x

x

1

2

x

L



Linear Independence

Two vectors, x1, x2 ∈ Rd, are linearly independent if they
aren’t scaled versions of each other:

sx1 6= x2, for all s ∈ R.



Equation for a Plane

Two linearly independent vectors, x, y ∈ Rd,
span a plane:

H = {sx + ty : s ∈ R, t ∈ R}

x

y


