Linear Algebra Basics: Vectors

Foundations of Data Analysis

February 15, 2022

CIFAR-10

$32 \times 32 \times 3=3,072$ dimensions
10 classes

Uniform Random Images

just kidding!

Manifold Hypothesis

Real data lie near lower-dimensional manifolds

Area of a Shrunken Square

What is the volume of the unit square shrunk by some small amount in each dimension?

$$
A=(1-2 \epsilon)^{2}
$$

Example: $\epsilon=\frac{1}{256}$
$A \approx 0.9844$

Volume in High Dimensions

What is the volume of the unit d-cube shrunk by some small amount in each dimension?

$$
V=(1-2 \epsilon)^{d}
$$

Approaches 0 as $d \rightarrow \infty$

Example: $256 \times 256 \times 3$ images, $\epsilon=\frac{1}{256}$

$$
V \approx 2.0 \times 10^{-670}
$$

Types of Data

- Categorical (outcomes come from a discrete set)
- Real-valued (outcomes come from \mathbb{R})
- Ordinal (outcomes have an order, e.g., integers)
- Vector (outcomes come from \mathbb{R}^{d})

Most data is a combination of multiple types!

Vectors

A vector is a list of real numbers:

$$
x=\left[\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{d}
\end{array}\right]
$$

Notation: $x \in \mathbb{R}^{d}$
Notation: We will use superscripts for coordinates, subscripts when talking about a collection of vectors, $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$.

Geometry: Direction and Distance

A vector is the difference between two points:

Geometry: Direction and Distance

A vector is the difference between two points:

Points as Vectors

We will often treat points as vectors, although they are technically not the same thing.

Think of a vector being anchored at the origin: $0=$

Vector Addition

$$
x+y=\left[\begin{array}{c}
x^{1}+y^{1} \\
x^{2}+y^{2} \\
\vdots \\
x^{d}+y^{d}
\end{array}\right]
$$

Vector Addition

$$
x+y=\left[\begin{array}{c}
x^{1}+y^{1} \\
x^{2}+y^{2} \\
\vdots \\
x^{d}+y^{d}
\end{array}\right]
$$

Vector Addition

$$
x+y=\left[\begin{array}{c}
x^{1}+y^{1} \\
x^{2}+y^{2} \\
\vdots \\
x^{d}+y^{d}
\end{array}\right]
$$

Scalar Multiplication

Multiplication between a vector $x \in \mathbb{R}^{d}$ and a scalar $s \in \mathbb{R}$:

$$
s x=s\left[\begin{array}{c}
x^{1} \\
x^{2} \\
\vdots \\
x^{d}
\end{array}\right]=\left[\begin{array}{c}
s x^{1} \\
s x^{2} \\
\vdots \\
s x^{d}
\end{array}\right]
$$

Statistics: Vector Mean

Given vector data $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$, the mean is

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\left[\begin{array}{c}
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{1} \\
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \\
\vdots \\
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{d}
\end{array}\right]
$$

Notice that this is a vector of means in each dimension.

Vector Norm

The norm of a vector is its length:

$$
\|x\|=\sqrt{\sum_{=1}^{s}(x)^{2}}
$$

Statistics: Total Variance

Remember, the equation for the variance of scalar data, $y_{1}, \ldots, y_{n} \in \mathbb{R}$:

$$
\operatorname{var}(y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

For total variance for vector data, $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, is

$$
\operatorname{var}(x)=\frac{1}{n-1} \sum_{i=1}^{n}\left\|x_{i}-\bar{x}\right\|^{2}
$$

Dot Product

Given two vectors, $x, y \in \mathbb{R}^{d}$, their dot product is

$$
\langle x, y\rangle=x^{1} y^{1}+x^{2} y^{2}+\cdots+x^{d} y^{d}=\sum_{i=1}^{d} x^{i} y^{i} .
$$

Also known as the inner product.
Relation to norm:

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Geometry: Angles and Lengths

The dot product tells us the angle θ between two vectors, $x, y \in \mathbb{R}^{d}$:

$$
\langle x, y\rangle=\|x\|\|y\| \cos \theta
$$

Or, rewriting to solve for θ :

$$
\theta=\arccos \frac{\langle x, y\rangle}{\|x\|\|y\|} .
$$

Geometry: Orthogonality

Two vectors at a 90 degree angle ($\pi / 2$ radians) are called orthogonal.
There dot product is zero:

$$
\langle x, y\rangle=\|x\|\|y\| \cos \frac{\pi}{2}=\|x\|\|y\| 0=0
$$

Geometry: Projection

$$
z=\frac{x}{\|x\|^{2}}\langle x, y\rangle
$$

Equation for a Line

Line passing through the origin along vector $x \in \mathbb{R}^{d}$

$$
L=\{t x: t \in \mathbb{R}\}
$$

Linear Independence

Two vectors, $x_{1}, x_{2} \in \mathbb{R}^{d}$, are linearly independent if they aren't scaled versions of each other:
$s x_{1} \neq x_{2}, \quad$ for all $s \in \mathbb{R}$.

Equation for a Plane

Two linearly independent vectors, $x, y \in \mathbb{R}^{d}$, span a plane:

$$
H=\{s x+t y: s \in \mathbb{R}, t \in \mathbb{R}\}
$$

