Linear Algebra Basics: Vectors

Foundations of Data Analysis

February 15, 2022

CIFAR-10

airplane automobile bird cat deer dog frog horse ship truck

 $32\times32\times3=3{,}072$ dimensions 10 classes

Uniform Random Images

just kidding!

Manifold Hypothesis

Real data lie near lower-dimensional manifolds

Area of a Shrunken Square

What is the volume of the unit square shrunk by some small amount in each dimension?

$$A = (1 - 2\epsilon)^2$$

Example: $\epsilon = \frac{1}{256}$

 $A \approx 0.9844$

Volume in High Dimensions

What is the volume of the unit *d*-cube shrunk by some small amount in each dimension?

$$V = (1 - 2\epsilon)^d$$

Approaches 0 as $d
ightarrow \infty$

Example: $256 \times 256 \times 3$ images, $\epsilon = \frac{1}{256}$

 $V \approx 2.0 \times 10^{-670}$

Types of Data

- Categorical (outcomes come from a discrete set)
- Real-valued (outcomes come from \mathbb{R})
- Ordinal (outcomes have an order, e.g., integers)
- Vector (outcomes come from \mathbb{R}^d)

Most data is a combination of multiple types!

Vectors

A vector is a list of real numbers:

$$x = \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^d \end{bmatrix}$$

Notation: $x \in \mathbb{R}^d$

Notation: We will use superscripts for coordinates, subscripts when talking about a collection of vectors, $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$.

Geometry: Direction and Distance

A vector is the difference between two points:

Geometry: Direction and Distance

A vector is the difference between two points:

Points as Vectors

We will often treat points as vectors, although they are technically not the same thing.

Think of a vector being anchored at the origin: 0 =

[0] 0 : 0

Vector Addition

Vector Addition

Vector Addition

$$x + y = \begin{bmatrix} x^1 + y^1 \\ x^2 + y^2 \\ \vdots \\ x^d + y^d \end{bmatrix}$$

Scalar Multiplication

Multiplication between a vector $x \in \mathbb{R}^d$ and a scalar $s \in \mathbb{R}$:

$$sx = s \begin{bmatrix} x^{1} \\ x^{2} \\ \vdots \\ x^{d} \end{bmatrix} = \begin{bmatrix} sx^{1} \\ sx^{2} \\ \vdots \\ sx^{d} \end{bmatrix}$$

Statistics: Vector Mean

Given vector data $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, the mean is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} x_i^1 \\ \frac{1}{n} \sum_{i=1}^{n} x_i^2 \\ \vdots \\ \frac{1}{n} \sum_{i=1}^{n} x_i^d \end{bmatrix}$$

Notice that this is a vector of means in each dimension.

The norm of a vector is its length:

$$\|x\| = \sqrt{\sum_{i=1}^d (x^i)^2}$$

Statistics: Total Variance

Remember, the equation for the variance of scalar data, $y_1, \ldots, y_n \in \mathbb{R}$:

$$\operatorname{var}(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2.$$

For total variance for vector data, $x_1, \ldots, x_n \in \mathbb{R}^d$, is

$$\operatorname{var}(x) = \frac{1}{n-1} \sum_{i=1}^{n} ||x_i - \bar{x}||^2$$

Dot Product

Given two vectors, $x, y \in \mathbb{R}^d$, their dot product is

$$\langle x, y \rangle = x^1 y^1 + x^2 y^2 + \dots + x^d y^d = \sum_{i=1}^d x^i y^i.$$

Also known as the inner product.

Relation to norm:

$$\|x\| = \sqrt{\langle x, x \rangle}$$

Geometry: Angles and Lengths

The dot product tells us the angle θ between two vectors, $x, y \in \mathbb{R}^d$:

$$\langle x, y \rangle = \|x\| \|y\| \cos \theta.$$

Or, rewriting to solve for θ :

$$\theta = \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

Geometry: Orthogonality

Two vectors at a 90 degree angle ($\pi/2$ radians) are called orthogonal.

There dot product is zero:

$$\langle x, y \rangle = ||x|| ||y|| \cos \frac{\pi}{2} = ||x|| ||y|| 0 = 0$$

Geometry: Projection

$$z = \frac{x}{\|x\|^2} \langle x, y \rangle$$

Equation for a Line

Line passing through the origin along vector $x \in \mathbb{R}^d$

$$L = \{tx : t \in \mathbb{R}\}$$

Linear Independence

Two vectors, $x_1, x_2 \in \mathbb{R}^d$, are linearly independent if they aren't scaled versions of each other:

$$sx_1 \neq x_2$$
, for all $s \in \mathbb{R}$.

Equation for a Plane

Two linearly independent vectors, $x, y \in \mathbb{R}^d$, span a plane:

