Maximum Likelihood Estimation

Foundations of Data Analysis

March 4, 2021

The purpose of these notes is to review the definition of a maximum likelihood estimate (MLE), and show that the sample mean is the MLE of the μ parameter in a Gaussian. For more details about MLEs, see the Wikipedia article:
https://en.wikipedia.org/wiki/Maximum_likelihood
Consider a random sample $X_{1}, X_{2}, \ldots, X_{n}$ coming from a distribution with parameter θ (for example, they could be from a Gaussian distribution with parameter μ). Remember the terminology "random sample" means that X_{i} random variables are independent and identically distributed (i.i.d.). Furthermore, let's assume that each X_{i} has a probability density function $p_{X_{i}}(x ; \theta)$. Given a realization of our random sample, $x_{1}, x_{2}, \ldots, x_{n}$, (remember, these are the actual numbers that we have observed), we define the likelihood function $\mathcal{L}(\theta)$ as follows:

$$
\begin{aligned}
\mathcal{L}(\theta) & =p_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right), \\
& =\prod_{i=1}^{n} p_{X_{i}}\left(x_{i} ; \theta\right), \quad \text { using independence of the } X_{i} .
\end{aligned}
$$

Here, $p_{X_{1}, \ldots, X_{n}}$ is the joint pdf for all of the X_{i} variables. This pdf depends on the value of the parameter θ for the distribution, so that is in the notation after the semicolon. Notice an important point, we are treating the x_{i} as constants (they are the data that we've observed) and \mathcal{L} is a function of θ. Maximum likelihood now says that we want to maximize this likelihood function as a function of θ.

MLE of Gaussian mean parameter, μ

Now, let's work this out for the Gaussian case, i.e., let $X_{1}, X_{2}, \ldots, X_{n} \sim N\left(\mu, \sigma^{2}\right)$. We will focus only on the MLE of the μ parameter, essentially treating σ^{2} as a known constant for simplicity of the example. The likelihood function looks like this:

$$
\begin{array}{rlr}
\mathcal{L}(\mu) & =p_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n} ; \mu\right), \\
& =\prod_{i=1}^{n} p_{X_{i}}\left(x_{i} ; \theta\right), & \text { using independence of the } X_{i}, \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right), & \text { using Gaussian pdf for each } X_{i}, \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right), \quad \text { product turns into a sum inside exp. }
\end{array}
$$

To maximize this function, it is easier to think about maximizing it's natural log. We can do this because \ln is a monotonically increasing function, so the value of μ that maximizes \mathcal{L} also maximizes $\ln \mathcal{L}$. So, the \log likelihood function is defined as

$$
\ell(\mu)=\ln \mathcal{L}(\mu)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}+C
$$

where C is a constant in μ (we don't need it to maximize ℓ). Now, defining our estimate of μ to maximize the log likelihood, we get

$$
\hat{\mu}=\arg \max _{\mu} \ell(\mu)=\arg \min _{\mu} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Notice we changed the sign in the last equality, and this changes us from a max to a min problem. This is called least squares, as we are minimizing the sum-of-squared differences from the μ to our data x_{i}. We can solve this maximization problem exactly using the fact (from calculus) that the derivative of ℓ with respect to μ will be zero at a maxima. We get

$$
0=\frac{d}{d \mu} \ell(\mu)=\frac{d}{d \mu} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=2 n \mu-2 \sum_{i=1}^{n} x_{i}
$$

Solving for μ, we get the sample mean as the MLE:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Here are some plots demonstrating the above MLE of the mean of a Gaussian. First, we generated a random sample, x_{1}, \ldots, x_{20} from a normal distribution with $\mu=3, \sigma=1$.

Next, we plot the likelihood functions, $p\left(x_{i} ; \mu\right)$, for each of the points separately. Note that the x_{i} points are plotted on the bottom (x-axis) and each one has its own Gaussian pdf "hill" centered above it. These are the $p\left(x_{i} ; \mu\right)$.

Individual Likelihoods Per Point

Next, we plot the likelihood function for all of the data, which is just the product of all of the $p\left(x_{i} ; \mu\right)$. The vertical line is at the average of the x_{i} data. You can see that the maximum of the likelihood curve is indeed at the average.

Likelihood Function

Finally, we plot the log-likelihood function (the log of the previous plot, which is just a quadratic). The maximum is still at the same place.

Average Log-Likelihood Function

MLE of a Bernoulli probability

The Bernoulli distribution is the binary variable distribution. If now our random variables X_{i} are binary variables, the notation is $X_{i} \sim \operatorname{Ber}(\theta)$. The parameter θ gives the probability that X_{i} is a one. In other words:

$$
\begin{aligned}
& P\left(X_{i}=1\right)=\theta \\
& P\left(X_{i}=0\right)=1-\theta
\end{aligned}
$$

Now, what is the MLE for θ ? The likelihood for a single x_{i} is:

$$
p\left(x_{i} ; \theta\right)=\theta^{x_{i}}(1-\theta)^{1-x_{i}}
$$

Notice this is θ when $x_{i}=1$ and $1-\theta$ when $x_{i}=0$. Now the joint likelihood of all x_{i} is just the product of these individual likelihoods:

$$
\begin{aligned}
L(\theta) & =p\left(x_{1}, \ldots, x_{n} ; \theta\right) \\
& =p\left(x_{1} ; \theta\right) \times p\left(x_{2} ; \theta\right) \times \cdots \times p\left(x_{n} ; \theta\right) \\
& =\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}} \\
& =\theta^{\sum_{i} x_{i}}(1-\theta)^{\sum_{i}\left(1-x_{i}\right)} \\
& =\theta^{k}(1-\theta)^{n-k}, \quad \text { where } k=\sum_{i=1}^{n} x_{i}
\end{aligned}
$$

To maximize $L(\theta)$, we can take the derivative (without first taking log this time):

$$
\begin{aligned}
\frac{d L}{d \theta} & =k \theta^{k-1}(1-\theta)^{n-k}-(n-k) \theta^{k}(1-\theta)^{n-k-1} \\
& =(k(1-\theta)-(n-k) \theta) \theta^{k-1}(1-\theta)^{n-k-1} \\
& =(k-n \theta) \theta^{k-1}(1-\theta)^{n-k-1}
\end{aligned}
$$

Setting this to zero $(d L / d \theta=0)$, and then solving for θ, gives the maximum likelihood estimate:

$$
\hat{\theta}=\frac{k}{n}
$$

This is what we intuitively expect. The value k is the number of ones appearing in our data, so $\hat{\theta}$ is the proportion of ones in our data.

