Bayesian Estimation

Foundations of Data Analysis

February 24, 2022

All models are wrong, but some are useful.

— George Box

Frequentist vs. Bayesian Statistics

Frequentist:

$$L(\theta; x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i; \theta)$$

Bayesian:

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta)p(\theta)}{p(x_1, \dots, x_n)}$$

Frequentist vs. Bayesian Statistics

Frequentist: θ is a parameter

$$L(\theta; x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i; \theta)$$

Bayesian: θ is a random variable

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta)p(\theta)}{p(x_1, \dots, x_n)}$$

The prior, $p(\theta)$, let's us use our **beliefs**, **previous** experience, or desires in the model.

- The prior, $p(\theta)$, let's us use our **beliefs**, **previous** experience, or desires in the model.
- We can make **probabilistic statements** about θ (e.g., mean, variance, quantiles, etc.).

- The prior, $p(\theta)$, let's us use our **beliefs**, **previous** experience, or desires in the model.
- We can make **probabilistic statements** about θ (e.g., mean, variance, quantiles, etc.).
- If θ is one of several competing **hypotheses**, we can assign it a probability.

- The prior, $p(\theta)$, let's us use our **beliefs**, **previous** experience, or desires in the model.
- We can make **probabilistic statements** about θ (e.g., mean, variance, quantiles, etc.).
- If θ is one of several competing **hypotheses**, we can assign it a probability.
- We can make **probabilistic predictions** of the next data point, \hat{x} , using

$$p(\hat{x} | x_1, \ldots, x_n) = \int p(\hat{x} | \theta) p(\theta | x_1, \ldots, x_n) d\theta$$

Not necessarily (we'll cover noninformative priors)

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!
- Whether using frequentist or Bayesian models, always check the assumptions you make.

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!
- Whether using frequentist or Bayesian models, always check the assumptions you make.
- Sometimes prior knowledge is a good thing.

Remember modus ponens?

Remember modus ponens?

 $A \Rightarrow B$

Remember modus ponens?

 $A \Rightarrow B$

A is true

Remember modus ponens?

 $A \Rightarrow B$

A is true

B is true

Remember modus ponens?

 $A \Rightarrow B$

If it's raining, then the sidewalk is wet.

A is true

B is true

Remember modus ponens?

 $A \Rightarrow B$

If it's raining, then the sidewalk is wet.

A is true

It's raining.

B is true

Remember modus ponens?

$A \Rightarrow B$	If it's raining, then the sidewalk is wet.
A is true	It's raining.
B is true	The sidewalk is wet.

How about *modus tollens*?

How about *modus tollens*?

 $A \Rightarrow B$

How about *modus tollens*?

 $A \Rightarrow B$

B is false

How about *modus tollens*?

 $A \Rightarrow B$

B is false

A is false

How about *modus tollens*?

 $A \Rightarrow B$

If it's raining, then the sidewalk is wet.

 \boldsymbol{B} is false

A is false

How about *modus tollens*?

 $A \Rightarrow B$

If it's raining, then the sidewalk is wet.

B is false

The sidewalk is not wet.

A is false

How about *modus tollens*?

$A \Rightarrow B$	If it's raining, then the sidewalk is wet.
B is false	The sidewalk is not wet.
A is false	It is not raining.

Logic	Probability
A,B are propositions	A, B are events
$A \Rightarrow B$	$P(B \mid A) > P(B)$

Logic	Probability
A,B are propositions	A,B are events
$A \Rightarrow B$	$P(B \mid A) > P(B)$

Weak form of *modus ponens*:

Logic	Probability
A,B are propositions	A,B are events
$A \Rightarrow B$	$P(B \mid A) > P(B)$

Weak form of *modus ponens*:

If A is true, B becomes more likely.

Logic	Probability
A,B are propositions	A,B are events
$A\Rightarrow B$	$P(B \mid A) > P(B)$

Weak form of *modus ponens*:

If A is true, B becomes more likely.

A is true.

Logic	Probability
A,B are propositions	A, B are events
$A\Rightarrow B$	$P(B \mid A) > P(B)$

Weak form of *modus ponens*:

If A is true, B becomes more likely.

A is true.

B is more likely.

Unlike Boolean logic, we can *flip* the implication!

Unlike Boolean logic, we can flip the implication!

given

Unlike Boolean logic, we can flip the implication!

$$\frac{P(B\,|\,A)>P(B)}{P(B)}>P(A)\qquad \text{multiply by }\frac{P(A)}{P(B)}$$

Unlike Boolean logic, we can flip the implication!

$$\frac{P(B\,|\,A)>P(B)}{P(B)} \qquad \qquad \text{given}$$

$$\frac{P(A)P(B\,|\,A)}{P(B)}>P(A) \qquad \qquad \text{multiply by } \frac{P(A)}{P(B)}$$

$$P(A\,|\,B)>P(A) \qquad \qquad \text{Bayes' Rule}$$

If *A* is true, *B* becomes more likely.

If *A* is true, *B* becomes more likely.

B is true.

If A is true, B becomes more likely.

B is true.

A is more likely.

If A is true, B becomes more likely.

B is true.

A is more likely.

If it's raining, then the sidewalk is more likely to be wet.

If A is true, B becomes more likely.

B is true.

A is more likely.

If it's raining, then the sidewalk is more likely to be wet.

The sidewalk is wet.

If A is true, B becomes more likely.

B is true.

A is more likely.

If it's raining, then the sidewalk is more likely to be wet.

The sidewalk is wet.

It's more likely to be raining.

Exercise for You

Given that P(B|A) > P(B), show that:

- If B happens, A becomes less likely. (weak form of modus tollens)
- 2. If \bar{A} happens, B becomes less likely.

Final Bayesian Logic Rules

Given that P(B|A) > P(B), analogous to $A \Rightarrow B$, we have four rules:

- 1. If A, then B is more likely (weak *modus ponens*)
- 2. If \bar{B} , then A is less likely (weak *modus tollens*)
- 3. If *B*, then *A* is more likely (no logical equivalent)
- 4. If A, then B is less likely (no logical equivalent)

What if I didn't give you the full table, but just:

$$P(R \mid C) = 0.83 > P(R) = 0.45$$

What can you say about the increase P(C | R) > P(C)?

Notice, having a cold *increases* my chance for a runny nose by the factor,

$$\frac{P(R \mid C)}{P(R)} = \frac{0.83}{0.45} = 1.85$$

Notice, having a cold *increases* my chance for a runny nose by the factor,

$$\frac{P(R \mid C)}{P(R)} = \frac{0.83}{0.45} = 1.85$$

$$\frac{P(C \mid R)}{P(C)}$$

Notice, having a cold *increases* my chance for a runny nose by the factor,

$$\frac{P(R \mid C)}{P(R)} = \frac{0.83}{0.45} = 1.85$$

$$\frac{P(C \mid R)}{P(C)} = \frac{P(C \cap R)}{P(R)P(C)}$$

Notice, having a cold *increases* my chance for a runny nose by the factor,

$$\frac{P(R \mid C)}{P(R)} = \frac{0.83}{0.45} = 1.85$$

$$\frac{P(C \mid R)}{P(C)} = \frac{P(C \cap R)}{P(R)P(C)}$$
$$= \frac{P(R \mid C)}{P(R)}$$

Notice, having a cold *increases* my chance for a runny nose by the factor,

$$\frac{P(R \mid C)}{P(R)} = \frac{0.83}{0.45} = 1.85$$

$$\frac{P(C \mid R)}{P(C)} = \frac{P(C \cap R)}{P(R)P(C)}$$
$$= \frac{P(R \mid C)}{P(R)}$$
$$= 1.85$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

 $X \sim \text{Ber}(\theta)$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \quad ext{where } k = \sum_i x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1}(1-\theta)^{n-k} - (n-k)\theta^k(1-\theta)^{n-k-1}$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \quad ext{where } k = \sum x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1}(1-\theta)^{n-k} - (n-k)\theta^k(1-\theta)^{n-k-1}$$
$$= (k(1-\theta) - (n-k)\theta)\theta^{k-1}(1-\theta)^{n-k-1}$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\frac{dL}{d\theta} = k\theta^{k-1}(1-\theta)^{n-k} - (n-k)\theta^k(1-\theta)^{n-k-1}$$

$$= (k(1-\theta) - (n-k)\theta)\theta^{k-1}(1-\theta)^{n-k-1}$$

$$= (k-n\theta)\theta^{k-1}(1-\theta)^{n-k-1}$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\begin{split} \frac{dL}{d\theta} &= k\theta^{k-1}(1-\theta)^{n-k} - (n-k)\theta^k(1-\theta)^{n-k-1} \\ &= (k(1-\theta) - (n-k)\theta)\theta^{k-1}(1-\theta)^{n-k-1} \\ &= (k-n\theta)\theta^{k-1}(1-\theta)^{n-k-1} \end{split}$$

$$\frac{dL}{d\theta}\left(\hat{\theta}\right) = 0 \quad \Rightarrow \quad \hat{\theta} = \frac{k}{n}$$

Bayesian Inference of a Bernoulli Proportion

Let's give θ a uniform prior: $\theta \sim \mathrm{Unif}(0,1)$ Posterior:

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta)p(\theta)}{p(x_1, \dots, x_n)}$$
$$= \frac{p(x_1, \dots, x_n \mid \theta)}{p(x_1, \dots, x_n)}$$

Bayesian Inference of a Bernoulli Proportion

Just need the denominator (normalizing constant):

$$p(x_1, \dots, x_n) = \int_0^1 p(x_1, \dots, x_n \mid \theta) p(\theta) d\theta$$
$$= \int_0^1 \theta^k (1 - \theta)^{n-k} d\theta$$
$$= \frac{\Gamma(k+1)\Gamma(n-k+1)}{\Gamma(n+2)}$$

Resulting posterior is:

$$p(\theta \mid x_1, \dots, x_n) = \frac{\Gamma(n+2)}{\Gamma(k+1)\Gamma(n-k+1)} \theta^k (1-\theta)^{n-k}$$

Beta Distribution

$$X \sim \text{Beta}(\alpha, \beta) \text{ PDF}$$
:

$$p(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

Beta Distribution

 $X \sim \text{Beta}(\alpha, \beta)$ PDF:

$$p(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

So, posterior of Bernoulli with Uniform prior is $\theta \sim \mathrm{Beta}(k+1,n-k+1).$

Bernoulli Likelihood with Beta(1,1) Prior

Bernoulli Likelihood with Beta(2,2) Prior

Bernoulli Likelihood with Beta(10,10) Prior

Bernoulli Likelihood with Beta(10,10) Prior (increased n)

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)

```
http://cerebro.xu.edu/math/Sources/Laplace/
```

Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)

```
http://cerebro.xu.edu/math/Sources/Laplace/
```

Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?

```
# Boys: k = 251527 # Girls: n - k = 241945
```

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)

http://cerebro.xu.edu/math/Sources/Laplace/

Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?

Boys:
$$k = 251527$$
 # Girls: $n - k = 241945$

Solution: Model the proportion of boys as the posterior: $\theta \mid k \sim \text{Beta}(251528, 241946)$. Then,

$$P(\theta \le 0.5 \mid k) = F_{\theta \mid k}(0.5) = 1.15 \times 10^{-42}$$