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All models are wrong, but some are useful.

— George Box



Frequentist vs. Bayesian Statistics
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Bayesian:
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Frequentist vs. Bayesian Statistics

Frequentist: ¢ is a parameter
LO;xy,...,x,) = Hp(x,-;@)

Bayesian: ¢ is a random variable
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Why is Random 6 Important?

» The prior, p(), let's us use our beliefs, previous
experience, or desires in the model.

» We can make probabilistic statements about 6
(e.g., mean, variance, quantiles, etc.).

» If 6 is one of several competing hypotheses, we
can assign it a probability.

» We can make probabilistic predictions of the next
data point, X, using

p(i—’xla"'axn) - /p('%’(g)p(elxh?xn)de
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But Bayesian Analysis is Subjective, Right?

» Not necessarily (we’ll cover noninformative priors)
» Frequentist models make assumptions, too!

» Whether using frequentist or Bayesian models,
always check the assumptions you make.

» Sometimes prior knowledge is a good thing.

Cremers, et al., Pattern Recognition, 2003
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Deductive Logic

How about modus tollens?

A=1B If it’s raining, then the sidewalk is wet.

B is false The sidewalk is not wet.

A is false It is not raining.
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Conditional Probability as Logic

Logic Probability

A, B are propositions | A, B are events

A=1B P(B|A) > P(B)

Weak form of modus ponens:

If A is true, B becomes more likely.

A is true.

B is more likely.
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Bayesian Logic

Unlike Boolean logic, we can flip the implication!

P(B|A) > P(B) given
P(AL[();B; 4) > P(A) multiply by %

P(A|B) > P(A) Bayes’ Rule
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Flipping the implication: P(B|A) > P(B)

If A is true, B becomes more likely.

B is true.

A is more likely.

If it’s raining, then the sidewalk is more likely to be wet.

The sidewalk is wet.

It's more likely to be raining.



Exercise for You

Given that P(B|A) > P(B), show that:

1. If B happens, A becomes less likely.
(weak form of modus tollens)

2. If A happens, B becomes less likely.



Final Bayesian Logic Rules

Given that P(B|A) > P(B), analagous to A = B, we
have four rules:

1.

If A, then B is more likely (weak modus ponens)

2. If B, then A is less likely (weak modus tollens)
3.
4. If A, then B is less likely (no logical equivalent)

If B, then A is more likely (no logical equivalent)



Cold Example

C
0 1
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Remember:
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Cold Example

C
0o 1
Remember:
R 0|0.50 | 0.05 | 0.55 P(C) = 03
1]0.20 | 0.25 | 0.45 P(C|R) =056

0.7 0.3
What if | didn’t give you the full table, but just:

P(R|C)=083 > P(R)=045

What can you say about the increase P(C |R) > P(C)?
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nose by the factor,
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Cold Example

Notice, having a cold increases my chance for a runny

nose by the factor,

P(R|C)

0.83

= 1.85

P(R)

~ 045

How does such a ratio increase if | flip the conditional?

P(CIR) _

P(CNR)

P(C)

~ P(R)P(C)
_ P(R[C)
P(R)

A

= 1.85
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Bayesian Inference of a Bernoulli Proportion

Let’s give 6 a uniform prior: § ~ Unif (0, 1)

Posterior:
plxi, .- x, | )p(0)
Olx1,...,x,) =
POlx ) p(X1, .5 Xn)
_ p(xr,., x| 0)

Pl )



Bayesian Inference of a Bernoulli Proportion
Just need the denominator (normalizing constant):

1
p('xb' . -7xn) :/ p(xla"' 7xn|9)p(9)d6
0

1
= / 0 (1 — 0)"*db
0

Fk+1)I'(n—k+1)
I'(n+2)

Resulting posterior is:

I'(n+2)

T(k+ DI(n—k+ 1)916(1 -0

pO|x1,...,x,) =
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Beta Distribution

X ~ Beta(a, ) PDF:

So, posterior of Bernoulli with Uniform prior is
0 ~ Beta(k+1,n—k+1).



Example

Bernoulli Likelihood with Beta(1,1) Prior
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Bernoulli Likelihood with Beta(2,2) Prior
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Example

Bernoulli Likelihood with Beta(10,10) Prior
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Example

Bernoulli Likelihood with Beta(10,10) Prior (increased n)
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Laplace’s Analysis of Birth Rates
Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/

Problem: Boys were born at a consistently, but only
slightly, higher rate than girls in Paris. Was this a real
effect or just due to chance?


http://cerebro.xu.edu/math/Sources/Laplace/

Laplace’s Analysis of Birth Rates
Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/

Problem: Boys were born at a consistently, but only
slightly, higher rate than girls in Paris. Was this a real
effect or just due to chance?

# Boys: k = 251527 # Girls: n — k = 241945


http://cerebro.xu.edu/math/Sources/Laplace/

Laplace’s Analysis of Birth Rates

Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/

Problem: Boys were born at a consistently, but only
slightly, higher rate than girls in Paris. Was this a real
effect or just due to chance?

# Boys: k = 251527 # Girls: n — k = 241945

Solution: Model the proportion of boys as the posterior:
0| k ~ Beta(251528,241946). Then,

P(0 <0.5]k) = Fpi(0.5) = 1.15 x 107*


http://cerebro.xu.edu/math/Sources/Laplace/

