Bayesian Estimation

Foundations of Data Analysis

February 24, 2022

All models are wrong, but some are useful.

- George Box

Frequentist vs. Bayesian Statistics

Frequentist:

$$
L\left(\theta ; x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} ; \theta\right)
$$

Bayesian:

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{n}\right)}
$$

Frequentist vs. Bayesian Statistics

Frequentist: θ is a parameter

$$
L\left(\theta ; x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(x_{i} ; \theta\right)
$$

Bayesian: θ is a random variable

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{n}\right)}
$$

Why is Random θ Important?

- The prior, $p(\theta)$, let's us use our beliefs, previous experience, or desires in the model.

Why is Random θ Important?

- The prior, $p(\theta)$, let's us use our beliefs, previous experience, or desires in the model.
- We can make probabilistic statements about θ (e.g., mean, variance, quantiles, etc.).

Why is Random θ Important?

- The prior, $p(\theta)$, let's us use our beliefs, previous experience, or desires in the model.
- We can make probabilistic statements about θ (e.g., mean, variance, quantiles, etc.).

If θ is one of several competing hypotheses, we can assign it a probability.

Why is Random θ Important?

- The prior, $p(\theta)$, let's us use our beliefs, previous experience, or desires in the model.
- We can make probabilistic statements about θ (e.g., mean, variance, quantiles, etc.).
- If θ is one of several competing hypotheses, we can assign it a probability.
- We can make probabilistic predictions of the next data point, \hat{x}, using

$$
p\left(\hat{x} \mid x_{1}, \ldots, x_{n}\right)=\int p(\hat{x} \mid \theta) p\left(\theta \mid x_{1}, \ldots, x_{n}\right) d \theta
$$

But Bayesian Analysis is Subjective, Right?

But Bayesian Analysis is Subjective, Right?

- Not necessarily (we'll cover noninformative priors)

But Bayesian Analysis is Subjective, Right?

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!

But Bayesian Analysis is Subjective, Right?

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!
- Whether using frequentist or Bayesian models, always check the assumptions you make.

But Bayesian Analysis is Subjective, Right?

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!
- Whether using frequentist or Bayesian models, always check the assumptions you make.
- Sometimes prior knowledge is a good thing.

Deductive Logic

Remember modus ponens?

Deductive Logic

Remember modus ponens?

$$
A \Rightarrow B
$$

Deductive Logic

Remember modus ponens?
$A \Rightarrow B$
A is true

Deductive Logic

Remember modus ponens?
$A \Rightarrow B$
A is true
B is true

Deductive Logic

Remember modus ponens?
$A \Rightarrow B \quad$ If it's raining, then the sidewalk is wet.
A is true
B is true

Deductive Logic

Remember modus ponens?
$A \Rightarrow B \quad$ If it's raining, then the sidewalk is wet.
A is true
It's raining.
B is true

Deductive Logic

Remember modus ponens?
$A \Rightarrow B \quad$ If it's raining, then the sidewalk is wet.
A is true
It's raining.
B is true
The sidewalk is wet.

Deductive Logic

How about modus tollens?

Deductive Logic

How about modus tollens?

$$
A \Rightarrow B
$$

Deductive Logic

How about modus tollens?

$$
A \Rightarrow B
$$

B is false

Deductive Logic

How about modus tollens?
$A \Rightarrow B$
B is false
A is false

Deductive Logic

How about modus tollens?
$A \Rightarrow B \quad$ If it's raining, then the sidewalk is wet.
B is false
A is false

Deductive Logic

How about modus tollens?
$A \Rightarrow B \quad$ If it's raining, then the sidewalk is wet.
B is false
A is false

Deductive Logic

How about modus tollens?
$A \Rightarrow B \quad$ If it's raining, then the sidewalk is wet.
B is false
A is false
It is not raining.

Conditional Probability as Logic

Conditional Probability as Logic

Weak form of modus ponens:

Conditional Probability as Logic

Weak form of modus ponens:
If A is true, B becomes more likely.

Conditional Probability as Logic

Logic	Probability
A, B are propositions	A, B are events
$A \Rightarrow B$	$P(B \mid A)>P(B)$

Weak form of modus ponens:
If A is true, B becomes more likely.
A is true.

Conditional Probability as Logic

Logic	Probability
A, B are propositions	A, B are events
$A \Rightarrow B$	$P(B \mid A)>P(B)$

Weak form of modus ponens:
If A is true, B becomes more likely.
A is true.
B is more likely.

Bayesian Logic

Unlike Boolean logic, we can flip the implication!

Bayesian Logic

Unlike Boolean logic, we can flip the implication!

$$
P(B \mid A)>P(B)
$$

given

Bayesian Logic

Unlike Boolean logic, we can flip the implication!

$$
\begin{array}{rlr}
P(B \mid A)>P(B) & \text { given } \\
\frac{P(A) P(B \mid A)}{P(B)}>P(A) & \text { multiply by } \frac{P(A)}{P(B)}
\end{array}
$$

Bayesian Logic

Unlike Boolean logic, we can flip the implication!

$$
\begin{array}{rlr}
P(B \mid A) & >P(B) & \text { given } \\
\frac{P(A) P(B \mid A)}{P(B)}>P(A) & \text { multiply by } \frac{P(A)}{P(B)} \\
P(A \mid B)>P(A) & \text { Bayes' Rule }
\end{array}
$$

Flipping the implication: $P(B \mid A)>P(B)$

Flipping the implication: $P(B \mid A)>P(B)$

If A is true, B becomes more likely.

Flipping the implication: $P(B \mid A)>P(B)$

If A is true, B becomes more likely.
B is true.

Flipping the implication: $P(B \mid A)>P(B)$

If A is true, B becomes more likely.
B is true.
A is more likely.

Flipping the implication: $P(B \mid A)>P(B)$

If A is true, B becomes more likely.
B is true.
A is more likely.

If it's raining, then the sidewalk is more likely to be wet.

Flipping the implication: $P(B \mid A)>P(B)$

If A is true, B becomes more likely.
B is true.
A is more likely.

If it's raining, then the sidewalk is more likely to be wet.
The sidewalk is wet.

Flipping the implication: $P(B \mid A)>P(B)$

If A is true, B becomes more likely.
B is true.
A is more likely.

If it's raining, then the sidewalk is more likely to be wet.
The sidewalk is wet.

It's more likely to be raining.

Exercise for You

Given that $P(B \mid A)>P(B)$, show that:

1. If \bar{B} happens, A becomes less likely.
(weak form of modus tollens)
2. If \bar{A} happens, B becomes less likely.

Final Bayesian Logic Rules

Given that $P(B \mid A)>P(B)$, analagous to $A \Rightarrow B$, we have four rules:

1. If A, then B is more likely (weak modus ponens)
2. If \bar{B}, then A is less likely (weak modus tollens)
3. If B, then A is more likely (no logical equivalent)
4. If \bar{A}, then B is less likely (no logical equivalent)

Cold Example

Cold Example

Remember:
$P(C)=0.3$
$P(C \mid R)=0.56$
$0.7 \quad 0.3$
What if I didn't give you the full table, but just:

$$
P(R \mid C)=0.83 \quad>\quad P(R)=0.45
$$

What can you say about the increase $P(C \mid R)>P(C)$?

Cold Example

Notice, having a cold increases my chance for a runny nose by the factor,

$$
\frac{P(R \mid C)}{P(R)}=\frac{0.83}{0.45}=1.85
$$

Cold Example

Notice, having a cold increases my chance for a runny nose by the factor,

$$
\frac{P(R \mid C)}{P(R)}=\frac{0.83}{0.45}=1.85
$$

How does such a ratio increase if I flip the conditional?

$$
\frac{P(C \mid R)}{P(C)}
$$

Cold Example

Notice, having a cold increases my chance for a runny nose by the factor,

$$
\frac{P(R \mid C)}{P(R)}=\frac{0.83}{0.45}=1.85
$$

How does such a ratio increase if I flip the conditional?

$$
\frac{P(C \mid R)}{P(C)}=\frac{P(C \cap R)}{P(R) P(C)}
$$

Cold Example

Notice, having a cold increases my chance for a runny nose by the factor,

$$
\frac{P(R \mid C)}{P(R)}=\frac{0.83}{0.45}=1.85
$$

How does such a ratio increase if I flip the conditional?

$$
\begin{aligned}
\frac{P(C \mid R)}{P(C)} & =\frac{P(C \cap R)}{P(R) P(C)} \\
& =\frac{P(R \mid C)}{P(R)}
\end{aligned}
$$

Cold Example

Notice, having a cold increases my chance for a runny nose by the factor,

$$
\frac{P(R \mid C)}{P(R)}=\frac{0.83}{0.45}=1.85
$$

How does such a ratio increase if I flip the conditional?

$$
\begin{aligned}
\frac{P(C \mid R)}{P(C)} & =\frac{P(C \cap R)}{P(R) P(C)} \\
& =\frac{P(R \mid C)}{P(R)} \\
& =1.85
\end{aligned}
$$

MLE of Bernoulli Proportion

$$
X \sim \operatorname{Ber}(\theta)
$$

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{k}(1-\theta)^{n-k}, \quad \text { where } k=\sum_{i} x_{i}
$$

MLE of Bernoulli Proportion

$$
X \sim \operatorname{Ber}(\theta)
$$

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{k}(1-\theta)^{n-k}, \quad \text { where } k=\sum_{i} x_{i}
$$

$$
\frac{d L}{d \theta}=k \theta^{k-1}(1-\theta)^{n-k}-(n-k) \theta^{k}(1-\theta)^{n-k-1}
$$

MLE of Bernoulli Proportion

$$
X \sim \operatorname{Ber}(\theta)
$$

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{k}(1-\theta)^{n-k}, \quad \text { where } k=\sum_{i} x_{i}
$$

$$
\begin{aligned}
\frac{d L}{d \theta} & =k \theta^{k-1}(1-\theta)^{n-k}-(n-k) \theta^{k}(1-\theta)^{n-k-1} \\
& =(k(1-\theta)-(n-k) \theta) \theta^{k-1}(1-\theta)^{n-k-1}
\end{aligned}
$$

MLE of Bernoulli Proportion

$X \sim \operatorname{Ber}(\theta)$

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{k}(1-\theta)^{n-k}, \quad \text { where } k=\sum_{i} x_{i}
$$

$$
\begin{aligned}
\frac{d L}{d \theta} & =k \theta^{k-1}(1-\theta)^{n-k}-(n-k) \theta^{k}(1-\theta)^{n-k-1} \\
& =(k(1-\theta)-(n-k) \theta) \theta^{k-1}(1-\theta)^{n-k-1} \\
& =(k-n \theta) \theta^{k-1}(1-\theta)^{n-k-1}
\end{aligned}
$$

MLE of Bernoulli Proportion

$X \sim \operatorname{Ber}(\theta)$

$$
L\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\theta^{k}(1-\theta)^{n-k}, \quad \text { where } k=\sum_{i} x_{i}
$$

$$
\begin{aligned}
\frac{d L}{d \theta} & =k \theta^{k-1}(1-\theta)^{n-k}-(n-k) \theta^{k}(1-\theta)^{n-k-1} \\
& =(k(1-\theta)-(n-k) \theta) \theta^{k-1}(1-\theta)^{n-k-1} \\
& =(k-n \theta) \theta^{k-1}(1-\theta)^{n-k-1}
\end{aligned}
$$

$$
\frac{d L}{d \theta}(\hat{\theta})=0 \quad \Rightarrow \quad \hat{\theta}=\frac{k}{n}
$$

Bayesian Inference of a Bernoulli Proportion

Let's give θ a uniform prior: $\theta \sim \operatorname{Unif}(0,1)$
Posterior:

$$
\begin{aligned}
p\left(\theta \mid x_{1}, \ldots, x_{n}\right) & =\frac{p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta)}{p\left(x_{1}, \ldots, x_{n}\right)} \\
& =\frac{p\left(x_{1}, \ldots, x_{n} \mid \theta\right)}{p\left(x_{1}, \ldots, x_{n}\right)}
\end{aligned}
$$

Bayesian Inference of a Bernoulli Proportion

 Just need the denominator (normalizing constant):$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right) & =\int_{0}^{1} p\left(x_{1}, \ldots, x_{n} \mid \theta\right) p(\theta) d \theta \\
& =\int_{0}^{1} \theta^{k}(1-\theta)^{n-k} d \theta \\
& =\frac{\Gamma(k+1) \Gamma(n-k+1)}{\Gamma(n+2)}
\end{aligned}
$$

Resulting posterior is:

$$
p\left(\theta \mid x_{1}, \ldots, x_{n}\right)=\frac{\Gamma(n+2)}{\Gamma(k+1) \Gamma(n-k+1)} \theta^{k}(1-\theta)^{n-k}
$$

Beta Distribution

$X \sim \operatorname{Beta}(\alpha, \beta)$ PDF:

$$
p(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Beta Distribution

$X \sim \operatorname{Beta}(\alpha, \beta)$ PDF:

$$
p(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

So, posterior of Bernoulli with Uniform prior is $\theta \sim \operatorname{Beta}(k+1, n-k+1)$.

Example

Bernoulli Likelihood with Beta(1,1) Prior

Example

Bernoulli Likelihood with Beta(2,2) Prior

Example

Bernoulli Likelihood with Beta(10,10) Prior

Example

Bernoulli Likelihood with Beta(10,10) Prior (increased n)

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/
Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/
Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?
\# Boys: $k=251527 \quad$ \# Girls: $n-k=241945$

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/
Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?

$$
\text { \# Boys: } k=251527 \quad \text { \# Girls: } n-k=241945
$$

Solution: Model the proportion of boys as the posterior: $\theta \mid k \sim \operatorname{Beta}(251528,241946)$. Then,

$$
P(\theta \leq 0.5 \mid k)=F_{\theta \mid k}(0.5)=1.15 \times 10^{-42}
$$

