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All models are wrong, but some are useful.

— George Box



Frequentist vs. Bayesian Statistics

Frequentist:

θ is a parameter

L(θ ; x1, . . . , xn) =
n∏

i=1

p(xi ; θ)

Bayesian:

θ is a random variable

p(θ | x1, . . . , xn) =
p(x1, . . . , xn | θ)p(θ)

p(x1, . . . , xn)
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Why is Random θ Important?

I The prior, p(θ), let’s us use our beliefs, previous
experience, or desires in the model.

I We can make probabilistic statements about θ
(e.g., mean, variance, quantiles, etc.).

I If θ is one of several competing hypotheses, we
can assign it a probability.

I We can make probabilistic predictions of the next
data point, x̂, using

p(x̂ | x1, . . . , xn) =

∫
p(x̂ | θ) p(θ | x1, . . . , xn) dθ
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But Bayesian Analysis is Subjective, Right?

I Not necessarily (we’ll cover noninformative priors)
I Frequentist models make assumptions, too!
I Whether using frequentist or Bayesian models,

always check the assumptions you make.
I Sometimes prior knowledge is a good thing.

Cremers, et al., Pattern Recognition, 2003



But Bayesian Analysis is Subjective, Right?

I Not necessarily (we’ll cover noninformative priors)

I Frequentist models make assumptions, too!
I Whether using frequentist or Bayesian models,

always check the assumptions you make.
I Sometimes prior knowledge is a good thing.

Cremers, et al., Pattern Recognition, 2003



But Bayesian Analysis is Subjective, Right?

I Not necessarily (we’ll cover noninformative priors)
I Frequentist models make assumptions, too!

I Whether using frequentist or Bayesian models,
always check the assumptions you make.

I Sometimes prior knowledge is a good thing.

Cremers, et al., Pattern Recognition, 2003



But Bayesian Analysis is Subjective, Right?

I Not necessarily (we’ll cover noninformative priors)
I Frequentist models make assumptions, too!
I Whether using frequentist or Bayesian models,

always check the assumptions you make.

I Sometimes prior knowledge is a good thing.

Cremers, et al., Pattern Recognition, 2003



But Bayesian Analysis is Subjective, Right?

I Not necessarily (we’ll cover noninformative priors)
I Frequentist models make assumptions, too!
I Whether using frequentist or Bayesian models,

always check the assumptions you make.
I Sometimes prior knowledge is a good thing.

Cremers, et al., Pattern Recognition, 2003



Deductive Logic

Remember modus ponens?

A⇒ B

A is true

B is true

If it’s raining, then the sidewalk is wet.
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Conditional Probability as Logic

Logic Probability

A,B are propositions A,B are events

A⇒ B P(B |A) > P(B)

Weak form of modus ponens:

If A is true, B becomes more likely.

A is true.

B is more likely.
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Bayesian Logic

Unlike Boolean logic, we can flip the implication!

P(B |A) > P(B) given

P(A)P(B |A)

P(B)
> P(A) multiply by

P(A)

P(B)

P(A |B) > P(A) Bayes’ Rule
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Exercise for You

Given that P(B |A) > P(B), show that:

1. If B̄ happens, A becomes less likely.
(weak form of modus tollens)

2. If Ā happens, B becomes less likely.



Final Bayesian Logic Rules

Given that P(B |A) > P(B), analagous to A⇒ B, we
have four rules:

1. If A, then B is more likely (weak modus ponens)

2. If B̄, then A is less likely (weak modus tollens)

3. If B, then A is more likely (no logical equivalent)

4. If Ā, then B is less likely (no logical equivalent)



Cold Example
C

0 1

R
0 0.50 0.05 0.55

1 0.20 0.25 0.45

0.7 0.3

Remember:
P(C) = 0.3
P(C |R) = 0.56

What if I didn’t give you the full table, but just:

P(R |C) = 0.83 > P(R) = 0.45

What can you say about the increase P(C |R) > P(C)?
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Cold Example
Notice, having a cold increases my chance for a runny
nose by the factor,

P(R |C)

P(R)
=

0.83
0.45

= 1.85

How does such a ratio increase if I flip the conditional?

P(C |R)

P(C)
=

P(C ∩ R)

P(R)P(C)

=
P(R |C)

P(R)

= 1.85
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MLE of Bernoulli Proportion
X ∼ Ber(θ)

L(θ | x1, . . . , xn) = θk(1− θ)n−k, where k =
∑

i

xi

dL
dθ

= kθk−1(1− θ)n−k − (n− k)θk(1− θ)n−k−1

= (k(1− θ)− (n− k)θ) θk−1(1− θ)n−k−1

= (k − nθ) θk−1(1− θ)n−k−1

dL
dθ

(
θ̂
)

= 0 ⇒ θ̂ =
k
n
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Bayesian Inference of a Bernoulli Proportion

Let’s give θ a uniform prior: θ ∼ Unif(0, 1)
Posterior:

p(θ | x1, . . . , xn) =
p(x1, . . . , xn | θ)p(θ)

p(x1, . . . , xn)

=
p(x1, . . . , xn | θ)

p(x1, . . . , xn)



Bayesian Inference of a Bernoulli Proportion
Just need the denominator (normalizing constant):

p(x1, . . . , xn) =

∫ 1

0
p(x1, . . . , xn | θ)p(θ)dθ

=

∫ 1

0
θk(1− θ)n−kdθ

=
Γ(k + 1)Γ(n− k + 1)

Γ(n + 2)

Resulting posterior is:

p(θ | x1, . . . , xn) =
Γ(n + 2)

Γ(k + 1)Γ(n− k + 1)
θk(1−θ)n−k



Beta Distribution

X ∼ Beta(α, β) PDF:

p(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

So, posterior of Bernoulli with Uniform prior is
θ ∼ Beta(k + 1, n− k + 1).



Beta Distribution

X ∼ Beta(α, β) PDF:

p(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

So, posterior of Bernoulli with Uniform prior is
θ ∼ Beta(k + 1, n− k + 1).



Example



Example



Example



Example



Laplace’s Analysis of Birth Rates
Mémoire sur les probabilités (1778)
http://cerebro.xu.edu/math/Sources/Laplace/

Problem: Boys were born at a consistently, but only
slightly, higher rate than girls in Paris. Was this a real
effect or just due to chance?

# Boys: k = 251527 # Girls: n− k = 241945

Solution: Model the proportion of boys as the posterior:
θ | k ∼ Beta(251528, 241946). Then,

P(θ ≤ 0.5 | k) = Fθ|k(0.5) = 1.15× 10−42

http://cerebro.xu.edu/math/Sources/Laplace/
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