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Pfizer COVID-19 Vaccine Trial

Pfizer enrolled 43,548 participants, half received the
vaccine, half received a placebo. 1

Of the 18,508 completing vaccination, 9 got COVID-19
Of the 18,435 completing placebo, 169 got COVID-19

Was the vaccine effective?

1https://www.nejm.org/doi/full/10.1056/NEJMoa2034577



Pfizer COVID-19 Vaccine Trial

Risk ratio:

RR =
risk of COVID-19 with vaccine

risk of COVID-19 with placebo

=
9/18508

169/18435
≈ 0.053

Vaccine Efficacy = 1− RR ≈ 0.947



Pfizer COVID-19 Vaccine Trial

Contingency table:

Vaccine Placebo
Positive 9 169

Negative 18,499 18,266

Using hypergeometric probability, p(k), the p-value is:

P(X ≤ 9) =
9∑

k=0

p(k) < 2× 10−16

This is the probability for this result, or better, by random
chance if the vaccine were not effective.



Algebra

StatisticsGeometry



Is there a relationship between the heights of mothers
and their daughters?



If you know a mother’s height, can you predict her
daughter’s height with any accuracy?



Linear regression is a tool for answering these types of
questions.



It models the relationship as a straight line.



Regression Setup

When we are given real-valued data in pairs:

(x1, y1), (x2, y2), . . . , (xn, yn) ∈ R2

Example:
xi is the height of the ith mother
yi is the height of the ith mother’s daughter



Linear Regression

Model the data as a line:
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yi = α + βxi + εi

α : intercept
β : slope
εi : error



Geometry: Least Squares

We want to fit a line as close to the data as possible,
which means we want to minimize the errors, εi.
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yi = α + βxi + εi

α : intercept
β : slope
εi : error



Geometry: Least Squares

Taking the line equation: yi = α + βxi + εi

Rearrange to get: εi = yi − α− βxi

We want to minimize the sum-of-squared errors (SSE):

SSE(α, β) =
n∑

i=1

ε2
i =

n∑
i=1

(yi − α− βxi)
2



Least Squares: Step 1

Center the data by removing the mean:

ỹi = yi − ȳ

x̃i = xi − x̄

Note:
∑n

i=1 ỹi = 0 and
∑n

i=1 x̃i = 0

We’ll first get a solution: ỹ = α+ βx̃, then shift it back to
the original (uncentered) data at the end



Least Squares: Step 2
Take derivative of SSE(α, β) wrt α and set to zero:

0 =
∂

∂α
SSE(α, β) =

∂

∂α

n∑
i=1

(ỹi − α− βx̃i)
2

= −2
n∑

i=1

(ỹi − α− βx̃i)

= −2
n∑

i=1

ỹi + 2nα + 2β
n∑

i=1

x̃i

Using
∑

ỹi =
∑

x̃i = 0, we get

α̂ = 0



Least Squares: Step 3

With α = 0, we are left with

ỹi = βx̃i + εi

Or, in vector notation:
ỹ1
ỹ2
...

ỹn

 = β


x̃1
x̃2
...

x̃n

+


ε1
ε2
...
εn





Least Squares: Step 3
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Minimizing SSE(α, β) =
∑
ε2

i = ‖ε‖2 is projection!

Solution is β̂ = 〈x̃,ỹ〉
‖x̃‖2



Shifting Back to Uncentered Data

So far, we have:
ỹi = β̂x̃i + εi

Expanding out x̃i and ỹi gives

(yi − ȳ) = β̂(xi − x̄) + εi

Rearranging gives

yi = (ȳ− β̂x̄) + β̂xi + εi

So, for the uncentered data, α̂ = ȳ− β̂x̄



Probability: Maximum Likelihood

So far, we have only used geometry, but if our data is
random, shouldn’t we be talking about probability?

To make linear regression probabilistic, we model the
errors as Gaussian:

εi ∼ N(0, σ2)

The likelihood is

L(α, β) =
n∏

i=1

1√
2πσ

exp

(
− ε2

i

2σ2

)



Probability: Maximum Likelihood

The log-likelihood is then

log L(α, β) = − 1
2σ2

n∑
i=1

ε2
i + const.

Maximizing this is equaivalent to minimizing SSE!

max log L = min
∑

ε2
i = min SSE


