Singular Value Decomposition (SVD)

Foundations of Data Analysis

March 24, 2022

What is SVD?

Decompose a matrix A into three parts:

$$
A=U S V^{T}
$$

The matrices U, S, and V have special properties

Why is SVD Useful?

Many applications in data analysis, including:

- Least squares fitting of data
- Dimensionality reduction
- Correlation analysis

Review: Data Tables

	ID	M.F	Hand	Age	Educ	SES	MMSE	CDR	eTIV	nWBV	ASF	Delay	RightHippoVol	LeftHippoVol
0	OAS1_0002_MR1	F	R	55	4	1.0	29	0.0	1147	0.810	1.531	NaN	4230	3807
1	OAS1_0003_MR1	F	R	73	4	3.0	27	0.5	1454	0.708	1.207	NaN	2896	2801
2	OAS1_0010_MR1	M	R	74	5	2.0	30	0.0	1636	0.689	1.073	NaN	2832	2578
3	OAS1_0011_MR1	F	R	52	3	2.0	30	0.0	1321	0.827	1.329	NaN	3978	4080
4	OAS1_0013_MR1	F	R	81	5	2.0	30	0.0	1664	0.679	1.055	NaN	3557	3495
5	OAS1_0015_MR1	M	R	76	2	NaN	28	0.5	1738	0.719	1.010	NaN	3052	2770
6	OAS1_0016_MR1	M	R	82	2	4.0	27	0.5	1477	0.739	1.188	NaN	3421	3119
7	OAS1_0018_MR1	M	R	39	3	4.0	28	0.0	1636	0.813	1.073	NaN	4496	4283
8	OAS1_0019_MR1	F	R	89	5	1.0	30	0.0	1536	0.715	1.142	NaN	3760	3167
9	OAS1_0020_MR1	F	R	48	5	2.0	29	0.0	1326	0.785	1.323	NaN	3557	3394
10	OAS1_0021_MR1	F	R	80	3	3.0	23	0.5	1794	0.765	0.978	NaN	3715	3019
11	OAS1_0022_MR1	F	R	69	2	4.0	23	0.5	1447	0.757	1.213	NaN	3258	3566
12	OAS1_0023_MR1	M	R	82	2	3.0	27	0.5	1420	0.710	1.236	NaN	3217	2160
13	OAS1_0026_MR1	F	R	58	5	1.0	30	0.0	1235	0.820	1.421	NaN	3783	3535
14	OAS1_0028_MR1	F	R	86	2	4.0	27	1.0	1449	0.738	1.211	NaN	3452	3100
15	OAS1_0030_MR1	F	R	65	2	3.0	29	0.0	1392	0.764	1.261	NaN	3969	3406

Row: individual data point

Column: particular dimension or feature

Review: Matrices

A matrix is an $n \times d$ array of real numbers:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 d} \\
a_{21} & a_{22} & \cdots & a_{2 d} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n d}
\end{array}\right)
$$

Notation: $A \in \mathbb{R}^{n \times d}$
A data matrix is n data points, each with d features

Review: Matrix-Vector Multiplication

We can multiply an $n \times d$ matrix A with a d-vector v :

$$
A v=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 d} \\
a_{21} & a_{22} & \cdots & a_{2 d} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n d}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{d}
\end{array}\right)=\left(\begin{array}{c}
\sum_{j=1}^{d} a_{1 j} v_{j} \\
\sum_{j=1}^{d} a_{2 j} v_{j} \\
\vdots \\
\sum_{j=1}^{d} a_{n j} v_{j}
\end{array}\right)
$$

The result is an n-vector.
Each entry is a dot product between a row of A and v :

$$
A v=\left(\begin{array}{c}
\left\langle a_{1} \bullet, v\right\rangle \\
\left\langle a_{2}, v\right\rangle \\
\vdots \\
\left\langle a_{n \bullet}, v\right\rangle
\end{array}\right)
$$

Review: Matrices as Transformations

Consider a 2D matrix and coordinate vectors in \mathbb{R}^{2} :

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad v_{1}=\binom{1}{0}, \quad v_{2}=\binom{0}{1}
$$

Then $A v_{1}$ and $A v_{2}$ result in the columns of A :

$$
A v_{1}=\binom{a_{11}}{a_{21}}, \quad A v_{2}=\binom{a_{12}}{a_{22}}
$$

Orthogonal Matrices

A matrix U is called orthogonal if the columns of U have unit length and are orthogonal to each other:

Unit length: $\left\|u_{\bullet i}\right\|=1$
Orthogonal: $\left\langle u_{\bullet i}, u_{\bullet j}\right\rangle=0$

Orthogonal Matrix Transformations

$$
U=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right), \quad v_{1}=\binom{1}{0}, \quad v_{2}=\binom{0}{1}
$$

Then $U v_{1}$ and $U v_{2}$ result in the columns of U :

$$
U_{1}=\binom{u_{11}}{u_{21}}=\left(u_{\bullet 1}, \quad v_{2}=\binom{u_{12}}{u_{22}}=u_{0 j}\right.
$$

SVD

Figure from M4D

$$
A=U S V^{T}
$$

$U: n \times n$ orthogonal matrix
$S: n \times d$ diagonal matrix
$V: d \times d$ orthogonal matrix

SVD

Application: Orthogonal Procrustes Analysis

Problem:

Find the rotation R^{*} that minimizes distance between two $d \times k$ matrices A, B :

$$
R^{*}=\arg \min _{R \in \operatorname{SO}(d)}\|R A-B\|^{2}
$$

Solution:

Let $U \Sigma V^{T}$ be the SVD of $B A^{T}$, then

$$
R^{*}=U V^{T}
$$

