Principal Component Analysis (PCA)

Foundations of Data Analysis

March 29, 2022

Example: Iris Data

Do we need all 4 dimensions?

How Many Dimensions Are In Your Data?

How Many Dimensions Are In Your Data?

Covariance

Covariance between two random samples: $x_{i}, y_{i} \in \mathbb{R}$

$$
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Measures how x "covaries" with y
Proportional to correlation:

$$
\operatorname{cov}(x, y)=\operatorname{corr}(x, y) \operatorname{sd}(x) \operatorname{sd}(y)
$$

Symmetric: $\operatorname{cov}(x, y)=\operatorname{cov}(y, x)$

Example: Iris Data

Covariance $=1.2869720000000002$
Correlation $=0.9628654314027962$

Centering a Data Matrix

Data matrix $X: n \times d$
n rows (data points)
d columns (dimensions, or features)

Mean of data (rows):

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} X_{i \bullet}
$$

Centered data (subtract mean from each row):

$$
\tilde{X}_{i \bullet}=X_{i \bullet}-\mu
$$

Covariance Matrix

Sample covariance matrix:

$$
\Sigma=\frac{1}{n-1} \tilde{X}^{T} \tilde{X}
$$

$\Sigma_{i j}$ is the covariance between the i th and j th dimension (feature)

$$
\Sigma_{i j}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k i}-\mu_{i}\right)\left(X_{k j}-\mu_{j}\right)=\operatorname{cov}\left(X_{\bullet i}, X_{\bullet j}\right)
$$

Properties

Covariance is symmetric: $\Sigma=\Sigma^{T}$

$$
\Sigma_{i j}=\operatorname{cov}\left(X_{\bullet i}, X_{\bullet j}\right)=\operatorname{cov}\left(X_{\bullet j}, X_{\bullet i}\right)=\Sigma_{j i}
$$

Covariance is positive-semidefinite:

$$
v^{T} \Sigma v \geq 0
$$

Example: Iris Data

Covariance matrix:

$$
\Sigma=\left(\begin{array}{cccc}
0.6857 & -0.04243 & 1.274 & 0.5163 \\
-0.04243 & 0.1900 & -0.3297 & -0.1216 \\
1.274 & -0.3297 & 3.116 & 1.296 \\
0.5163 & -0.1216 & 1.296 & 0.5810
\end{array}\right)
$$

Eigenvectors, Eigenvalues

Square matrix $A: d \times d$
Eigenvector $v \in \mathbb{R}^{d}$ and eigenvalue $\lambda \in \mathbb{R}$:

$$
A v=\lambda v
$$

Meaning: The transformation A is a scaling when applied to v

Eigenanalysis of a Symmetric Matrix

Fact: If A is a $d \times d$ symmetric matrix, it has exactly d real eigenvalues $\lambda_{k} \in \mathbb{R}$ (possibly with repeats).

Each eigenvalue λ_{k} has a corresponding eigenvector $v_{k} \in \mathbb{R}^{d}$.

Eigenanalysis of a Symmetric Matrix

The SVD of a symmetric, positive-semidefinite matrix looks like this:

$$
A=V S V^{T}
$$

The singular values are the eigenvalues: $s_{k}=\lambda_{k}$.
The left and right singular vectors are the same and are the eigenvectors, v_{k}.

Principal Component Analysis

PCA is an eigenanalysis of the covariance matrix:

$$
\Sigma=V \Lambda V^{T}
$$

- Eigenvectors: $v_{k}=V_{\bullet k}$ are principal components
- Eigenvalues: λ_{k} are the variance of the data in the v_{k} direction

PCA Algorithm Summary

Input: Data matrix X : $n \times d$

1. Compute centered data \tilde{X}
2. Compute covariance matrix:

$$
\Sigma=\frac{1}{n-1} \tilde{X}^{T} \tilde{X}
$$

3. Eigenanalysis of covariance:

$$
\Sigma=V \Lambda V^{T}
$$

Hint: numpy.linalg.eigh computes an eigenanalysis of a symmetric matrix!

Dimensionality Reduction

Goal: Find a k-dimensional subspace, V_{k}, that best fits our data

Least-squares fit:

$$
\arg \min _{V_{k}} \sum_{i=1}^{n} \operatorname{distance}\left(V_{k}, x_{i}\right)^{2}
$$

Solution: Use first k principal components:

$$
V_{k}=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)
$$

Maximizing Variance of Projected Data

Fact: PCA finds dimensions that maximize variance

Given direction $v \in \mathbb{R}^{d}$, with $\|v\|=1$, project data point $x \in \mathbb{R}^{d}$ onto v :

$$
z=\langle v, x\rangle
$$

Maximizing Variance of Projected Data

Given mean-centered data, x_{i},
first principal component, v_{1} maximizes variance:

$$
v_{1}=\arg \max _{\|v\|=1} \sum_{i=1}^{n}\left\langle v, x_{i}\right\rangle^{2}
$$

PC's as Rotation

X

Z
The principal components matrix, V, acts as a rotation:

$$
Z=X V
$$

Columns of Z are new coordinates, called loadings

Example: Iris Data

Example: Iris Data PCA

Eigenvalues: $\quad \lambda=\left(\begin{array}{lllll}4.22824171 & 0.24267075 & 0.0782095 & 0.02383509\end{array}\right)$

Scree Plot: Eigenvalues (Variance)

Iris Data Scree Plot

Horizontal axis: which principal component (index k)
Vertical axis: proportion of variance: $\frac{\lambda_{k}}{\sum_{j=1}^{d} \lambda_{j}}$

