More on Logistic Regression

Foundations of Data Analysis

April 7, 2022

Volumes in High Dimensions

What is the volume of the unit d-cube shrunk by some small amount in each dimension?

Volumes in High Dimensions

What is the volume of the unit d-cube shrunk by some small amount in each dimension?

$$
V=(1-2 \epsilon)^{d}
$$

Approaches 0 as $d \rightarrow \infty$

Volumes in High Dimensions

What is the volume of the unit d-cube shrunk by some small amount in each dimension?

$$
V=(1-2 \epsilon)^{d}
$$

Approaches 0 as $d \rightarrow \infty$

Example: $256 \times 256 \times 3$ images, $\epsilon=\frac{1}{256}$

Volumes in High Dimensions

What is the volume of the unit d-cube shrunk by some small amount in each dimension?

$$
V=(1-2 \epsilon)^{d}
$$

Approaches 0 as $d \rightarrow \infty$

Example: $256 \times 256 \times 3$ images, $\epsilon=\frac{1}{256}$

$$
V \approx 2.0 \times 10^{-670}
$$

Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
$X, Y \sim \operatorname{Unif}\left([0,1]^{d}\right)$

Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
$X, Y \sim \operatorname{Unif}\left([0,1]^{d}\right)$

What is the distribution of the distance between them?
$D=\|X-Y\|$

Angles in High Dimensions

Sample two directions uniformly from the unit d-sphere: $X, Y \sim \operatorname{Unif}\left(S^{d}\right)$

Angles in High Dimensions

Sample two directions uniformly from the unit d-sphere: $X, Y \sim \operatorname{Unif}\left(S^{d}\right)$

What is the distribution of the angle between them?
$A=\arccos \langle X, Y\rangle$

Angles in High Dimensions

Sample two directions uniformly from the unit d-sphere: $X, Y \sim \operatorname{Unif}\left(S^{d}\right)$

What is the distribution of the angle between them?
$A=\arccos \langle X, Y\rangle$

Note: Equivalently, sample $X, Y \sim N(0, I)$ and normalize: $A=\arccos \left\langle\frac{X}{\|X\|}, \frac{Y}{\|Y\|}\right\rangle$

$d=1$

$d=2$

$d=1$

$d=2$

$d=10$

$d=1$

$d=100$

$d=2$

$d=10$

$d=1$

$d=100$

$d=2$

$d=1,000$

$d=10$

$d=1$

$d=100$

$d=2$

$d=1,000$

$d=10$

$d=10,000$

Adversarial Examples

57.7% confidence

$\operatorname{sign}\left(\nabla_{x} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right)$
"nematode"
8.2\% confidence

$$
\begin{gathered}
\boldsymbol{x}+ \\
\epsilon \operatorname{sign}\left(\nabla_{x} J(\boldsymbol{\theta}, \boldsymbol{x}, y)\right) \\
\text { "gibbon" } \\
99.3 \% \text { confidence }
\end{gathered}
$$

Goodfellow et al. ICLR 2015

High-Dimensionality Explanation?

The Relationship Between High-Dimensional Geometry and Adversarial Examples

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg, \& Ian Goodfellow
\{gilmer,lmetz,schsam,maithra, wattenberg,goodfellow\}@google.com
faghri@cs.toronto.edu

High-Dimensionality Explanation?

The Relationship Between High-Dimensional

 Geometry and Adversarial ExamplesJustin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu,
Martin Wattenberg, \& Ian Goodfellow
\{gilmer,lmetz, schsam,maithra,wattenberg,goodfellow\}@google.com
faghri@cs.toronto.edu

ARE ADVERSARIAL EXAMPLES INEVITABLE?

Ali Shafahi, Ronny Huang, Christoph Studer, Soheil Feizi \& Tom Goldstein

High-Dimensionality Explanation?

The Relationship Between High-Dimensional Geometry and Adversarial Examples

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu,
Martin Wattenberg, \& Ian Goodfellow
Google Brain
\{gilmer,1metz,schsam,maithra, wattenberg, goodfellow\}@google.com
faghri@cs.toronto.edu

ARE ADVERSARIAL EXAMPLES INEVITABLE?

Ali Shafahi, Ronny Huang, Christoph Studer, Soheil Feizi \& Tom Goldstein

The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure

CIFAR-10

$32 \times 32 \times 3=3,072$ dimensions
10 classes

Distances in Real Data

Distances in Real Data

$S=$ sample covariance of CIFAR-10

Angles in Real Data

CIFAR-10

$N(0, I)$

Logistic Regression

Planes vs. Frogs: Test Images

Planes vs. Frogs: Test Images

Logistic regression accuracy $=89.40 \%$

Gradient Attack

Move input x in direction that increases loss function, J :

Gradient Attack

Move input x in direction that increases loss function, J :
Attack: $x+\eta$
$\eta=\lambda \nabla_{x} J(w, x, y), \quad$ for some $\lambda>0$

Gradient Attack

Move input x in direction that increases loss function, J :
Attack: $x+\eta$
$\eta=\lambda \nabla_{x} J(w, x, y), \quad$ for some $\lambda>0$
For logistic regression: $\eta \propto w$

Planes vs. Frogs

Test Images Projected onto w 89.40\% Accuracy

Planes vs. Frogs

Test Images Projected onto w 89.40\% Accuracy

Gradient attack of $1.5 \frac{\mathrm{w}}{\|w\|}$ 50.25\% Accuracy

Planes vs. Frogs: Test Images

Accuracy $=89.40 \%$

Planes vs. Frogs: Gradient Attack

Accuracy $=50.25 \%$

Random Attack

Add a random vector η to an image x

$$
\eta \sim \operatorname{Unif}(-0.5,0.5)^{3072}
$$

Planes vs. Frogs: Test Images

Accuracy $=89.40 \%$

Planes vs. Frogs: Noise

Planes vs. Frogs: Noise

Accuracy $=88.50 \%$

How Many Dimensions Do We Need?

1. Compute PCA of training data
2. Project onto top 10 dimensions
3. Retrain logistic regression

Planes vs. Frogs: Test Images

Accuracy $=89.40 \%$

Planes vs. Frogs: PCA $(d=10)$

Planes vs. Frogs: PCA $(d=10)$

Accuracy $=86.75 \%$

Planes vs. Frogs: PCA $(d=20)$

Planes vs. Frogs: PCA $(d=20)$

Accuracy $=88.60 \%$

Planes vs. Frogs: $\mathrm{PCA}(d=100)$

Planes vs. Frogs: PCA $(d=100)$

Accuracy $=89.30 \%$

Gradient Attack: PCA $(d=10)$

Gradient Attack: PCA $(d=10)$

Accuracy $=50.80 \%$, but $\|\eta\|=2.4$ (vs. 1.5 before)

Removing The "Best" Separating Dimension

1. Project out the w dimension found by logistic regression
2. Retrain logistic regression
3. Run on original test data (without the projection step)

Planes vs. Frogs: Test Images

Accuracy $=89.40 \%$

Planes vs. Frogs: Remove w

Accuracy $=86.00 \%$

Manifold Hypothesis

Real data lie near lower-dimensional manifolds

