Backpropagation
Foundations of Data Analysis

April 19, 2022

Single Layer Model

X

w . .
X ‘ ~ Prediction:
W, y

X3 Ws j} - ¢(WX)
> = p(w1x1 + waxy + Wixz + Waxa)

Xy

Minimize loss between prediction, y, and true value, y:

L(y,y)

This represents many different models we’ve seen!

Loss Functions for Regression

Dependent variable data: y € R
Model predictions: y € R

Mean squared error (MSE): (Linear regression)

n

L(y,3) = % > i =)

i=1

Mean absolute error (MAE):

NS .
Ll.y) =~ > |yi — 9
i=1

Loss Functions for Classification

Binary labels: y € {—1,+1}
Continuous score predictions: y € R

Zero-One loss: (Perceptron)

L0y.5) = 1 ifyy <0
V=30 ity >0

Hinge loss: (Support Vector Machines)

. 1< .
L(y,3) =~ max(0,1—5iy:)
i=1

Loss Functions for Classification

Binary labels: y € {0, 1}
Probability predictions: y € [0, 1] predicts p(y = 1 | x)

Cross entropy: (Logistic regression)

n

L(y,y) = P > ilngi+ (1 —y)In(1 —3))

i=1

Chain Rule

Given two differentiable functions,
fTR—=-R, g:R—=R,
the derivative of their composition is:

d

o [(g())] =f'(g(x))g'(x)

Multivariate Mappings

Given a multivariate mapping,
g RP — RY,

we can write it as g multivariate functions:

glxr, ... xp) = (g1(x1, oo, xp), oo, g, - -

Jacobian Matrix

. . . . _ 0Og;
Partial der :Digi = 3

artial derivatives: D;g; o,
The Jacobian matrix is the g X p matrix of partial
derivatives:

Dig1 Dyg1 -+ Dpgi

D D)
Dg — 1:g2 2:82 82

Dlgq D28q ngq

Multivariate Chain Rule

Given two multivariate mappings,
f:R?T—>R", g:RP — RY

the Jacobian matrix of their composition is:
D[f(g(x))] = Df (g(x))Dg(x).

Note: This is a matrix multiplication on the right.

Gradient Chain Rule

Given a multivariate function,
f:R?— R,

The Jacobian matrix is the same thing as the transposed
gradient:

D) = (3 &) =’

Gradient Chain Rule

Given two multivariate mappings,
fRT—R, g:RP—RY

the gradient is the transpose of the Jacobian chain rule
equation:

V [f(g(x)] = [Df(g(x))Dg(x)]" = Dg(x)"Vf(g(x)).

Matrix Derivatives

Think of matrix-vector multiplication as a mapping of a
vector x and a matrix W:

Wi Wi o Wy,\ [x
o(W,x) = Wx Wo Wy - Wy | [X2
Wa W - Wy Ap

Input dimension: p
Output dimension: g
Weight matrix Wis g X p

Matrix Derivatives

The kth entry in the output is:
8k(W.x) = Wixt + Wioxy + -+ - + Wi,

Partial derivative wrt W,-j is

ogr {xj ifi =k

Dygi =
8k 0 ifik

Notice this is a 3D array!

Single-Layer Neural Network

z = ¢(Wx) = ¢(g(W,x))

Gradient for weights:

0z)
e = 96 W 0)Dys (W)

Note: ¢’ is the (univariate) derivative of ¢

Two-Layer NN

O \Jf? Y 5
" L—>0
y L(5)

Wi Wz W
W e Wz

Layer 1: 2= ¢(W!x)
Layer 2: § = ¢(W2)z)
Final Loss Function: £(y, y)

Second-Layer Derivative

Gradient of loss wrt W(2):

oL (g) 9
ow) \dy) | ow)”

- (‘C’é) {/(sW?,2))Dyg(W?),2)}

First-Layer Derivative

Gradient of loss wrt W(1):

oL [dcL 0z
aw;j”‘(dy)wzy} oW]
= (%) {5 e 2)DgW?.2)}
— d)A) 8 < 28 R

X [Dijg(W(l),x)}

Softmax

Extends logistic regression to more than 2 classes.
» Classlabels:y =1,2,... K
» Weight vector for each class: wy, . .., wg € R4*!

100

075

exp (" wy)

=klx)=
p(y | x) ZJKZI exp(xTw;)

