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Single Layer Model
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Minimize loss between prediction, y, and true value, y:

L(y,y)

This represents many different models we’ve seen!



Loss Functions for Regression

Dependent variable data: y € R
Model predictions: y € R

Mean squared error (MSE): (Linear regression)
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Mean absolute error (MAE):
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Loss Functions for Classification

Binary labels: y € {—1,+1}
Continuous score predictions: y € R

Zero-One loss: (Perceptron)

L0y.5) = 1 ifyy <0
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Hinge loss: (Support Vector Machines)
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Loss Functions for Classification

Binary labels: y € {0, 1}
Probability predictions: y € [0, 1] predicts p(y = 1 | x)

Cross entropy: (Logistic regression)
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Chain Rule

Given two differentiable functions,
fTR—=-R, g:R—=R,
the derivative of their composition is:
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Multivariate Mappings

Given a multivariate mapping,
g RP — RY,

we can write it as g multivariate functions:

glxr, ... xp) = (g1(x1, oo, xp), oo, g, - -



Jacobian Matrix
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Partial der :Digi = 3

artial derivatives: D;g; o,
The Jacobian matrix is the g X p matrix of partial
derivatives:

Dig1 Dyg1 -+ Dpgi

D D )
Dg — 1:g2 2:82 82

Dlgq D28q ngq



Multivariate Chain Rule

Given two multivariate mappings,
f:R?T—>R", g:RP — RY

the Jacobian matrix of their composition is:
D[f(g(x))] = Df (g(x))Dg(x).

Note: This is a matrix multiplication on the right.



Gradient Chain Rule

Given a multivariate function,
f:R?— R,

The Jacobian matrix is the same thing as the transposed
gradient:
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Gradient Chain Rule

Given two multivariate mappings,
fRT—R, g:RP—RY

the gradient is the transpose of the Jacobian chain rule
equation:

V [f(g(x)] = [Df(g(x))Dg(x)]" = Dg(x)"Vf(g(x)).



Matrix Derivatives

Think of matrix-vector multiplication as a mapping of a
vector x and a matrix W:
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Input dimension: p
Output dimension: g
Weight matrix Wis g X p



Matrix Derivatives

The kth entry in the output is:
8k(W.x) = Wixt + Wioxy + -+ - + Wi,

Partial derivative wrt W,-j is

ogr {xj ifi =k

Dygi =
8k 0 ifik

Notice this is a 3D array!



Single-Layer Neural Network

z = ¢(Wx) = ¢(g(W,x))

Gradient for weights:
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Note: ¢’ is the (univariate) derivative of ¢



Two-Layer NN
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Layer 1: 2= ¢(W!x)
Layer 2: § = ¢(W2)z)
Final Loss Function: £(y, y)



Second-Layer Derivative

Gradient of loss wrt W(2):
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First-Layer Derivative

Gradient of loss wrt W(1):
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Softmax

Extends logistic regression to more than 2 classes.
» Classlabels:y =1,2,... K
» Weight vector for each class: wy, . .., wg € R4*!
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