
Backpropagation

Foundations of Data Analysis

April 19, 2022

Single Layer Model
x1

x2

x3

x4

y^
w1

w2

w3

w4

Prediction:

ŷ = φ(Wx)
= φ(w1x1 + w2x2 + w3x3 + w4x4)

Minimize loss between prediction, ŷ, and true value, y:

L(y, ŷ)

This represents many different models we’ve seen!

Loss Functions for Regression
Dependent variable data: y ∈ R
Model predictions: ŷ ∈ R

Mean squared error (MSE): (Linear regression)

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)
2

Mean absolute error (MAE):

L(y, ŷ) = 1
n

n∑
i=1

|yi − ŷi|

Loss Functions for Classification

Binary labels: y ∈ {−1,+1}
Continuous score predictions: ŷ ∈ R

Zero-One loss: (Perceptron)

L(y, ŷ) =

{
1 if yŷ ≤ 0
0 if yŷ > 0

Hinge loss: (Support Vector Machines)

L(y, ŷ) = 1
n

n∑
i=1

max(0, 1− ŷiyi)

Loss Functions for Classification

Binary labels: y ∈ {0, 1}
Probability predictions: ŷ ∈ [0, 1] predicts p(y = 1 | x)

Cross entropy: (Logistic regression)

L(y, ŷ) = 1
n
−

n∑
i=1

(yi ln ŷi + (1− yi) ln(1− ŷi))

Chain Rule

Given two differentiable functions,

f : R→ R, g : R→ R,

the derivative of their composition is:

d
dx

[f (g(x))] = f ′(g(x))g′(x)

Multivariate Mappings

Given a multivariate mapping,

g : Rp → Rq,

we can write it as q multivariate functions:

g(x1, . . . , xp) = (g1(x1, . . . , xp), . . . , gq(x1, . . . , xp)).

Jacobian Matrix

Partial derivatives: Djgi =
∂gi
∂xj

The Jacobian matrix is the q× p matrix of partial
derivatives:

Dg =

D1g1 D2g1 · · · Dpg1
D1g2 D2g2 · · · Dpg2

...
...

...
D1gq D2gq · · · Dpgq

Multivariate Chain Rule

Given two multivariate mappings,

f : Rq → Rr, g : Rp → Rq

the Jacobian matrix of their composition is:

D [f (g(x))] = Df (g(x))Dg(x).

Note: This is a matrix multiplication on the right.

Gradient Chain Rule

Given a multivariate function,

f : Rq → R,

The Jacobian matrix is the same thing as the transposed
gradient:

Df (x) =
(

∂f
∂x1
· · · ∂f

∂xq

)
= ∇f (x)T

Gradient Chain Rule

Given two multivariate mappings,

f : Rq → R, g : Rp → Rq,

the gradient is the transpose of the Jacobian chain rule
equation:

∇ [f (g(x)] = [Df (g(x))Dg(x)]T = Dg(x)T∇f (g(x)).

Matrix Derivatives

Think of matrix-vector multiplication as a mapping of a
vector x and a matrix W :

g(W, x) = Wx =

W11 W12 · · · W1p
W21 W22 · · · W2p

...
...

...
Wq1 Wq2 · · · Wqp

x1
x2
...

xp

Input dimension: p
Output dimension: q
Weight matrix W is q× p

Matrix Derivatives

The kth entry in the output is:

gk(W, x) = Wk1x1 + Wk2x2 + · · ·+ Wkpxp

Partial derivative wrt Wij is

Dijgk =
∂gk

∂Wij
=

{
xj if i = k
0 if i 6= k

Notice this is a 3D array!

Single-Layer Neural Network

z = φ(Wx) = φ(g(W, x))

Gradient for weights:

∂zk

∂Wij
= φ′(gk(W, x))Dijgk(W, x)

Note: φ′ is the (univariate) derivative of φ

Two-Layer NN

Layer 1: z = φ(W(1)x)
Layer 2: ŷ = φ(W(2)z)
Final Loss Function: L(y, ŷ)

Second-Layer Derivative

Gradient of loss wrt W(2):

∂L
∂W(2)

ij

=

(
dL
dŷ

){
∂ŷ

∂W(2)
ij

}

=

(
dL
dŷ

){
φ′(g(W(2), z))Dijg(W(2), z)

}

First-Layer Derivative

Gradient of loss wrt W(1):

∂L
∂W(1)

ij

=

(
dL
dŷ

)
{Dzŷ}

[
∂z

∂W(1)
ij

]

=

(
dL
dŷ

){
φ′(g(W(2), z))Dzg(W(2), z)

}
×

×
[
Dijg(W(1), x)

]

Softmax

Extends logistic regression to more than 2 classes.
I Class labels: y = 1, 2, . . . ,K
I Weight vector for each class: w1, . . . ,wK ∈ Rd+1

p(y = k | x) = exp(xTwk)∑K
j=1 exp(xTwj)

