
Convolution

Foundations of Data Analysis

April 19, 2022



Spatial Filters

Definition
A spatial filter is an image operation where each pixel
value I(u, v) is changed by a function of the intensities
of pixels in a neighborhood of (u, v).



What Spatial Filters Can Do

Blurring/Smoothing

→



What Spatial Filters Can Do

Sharpening

→



What Spatial Filters Can Do

Weird Stuff

→



Example: The Mean of a Neighborhood
Consider taking the mean in a 3 × 3 neighborhood:
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I(u + i, v + j)



How a Linear Spatial Filter Works

H is the filter “kernel” or “matrix”

For the neighborhood mean: H(i, j) = 1
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General Filter Equation

Notice that the kernel H is just a small image!

Let H : RH → [0,K − 1]

I′(u, v) =
∑

(i,j)∈RH

I(u + i, v + j) · H(i, j)

This is known as a correlation of I and H



What Does This Filter Do?
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Identity function (leaves image alone)



What Does This Filter Do?
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Mean (averages neighborhood)



What Does This Filter Do?
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What Does This Filter Do?
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Sharpen (identity minus mean filter)



Filter Normalization

I Notice that all of our filter examples sum up to one
I Multiplying all entries in H by a constant will cause

the image to be multiplied by that constant
I To keep the overall brightness constant, we need H

to sum to one

I′(u, v) =
∑
i, j

I(u + i, v + j) · (cH(i, j))

= c
∑
i, j

I(u + i, v + j) · H(i, j)



Effect of Filter Size

Mean Filters:

Original 7 × 7 15 × 15 41 × 41



What To Do At The Boundary?



What To Do At The Boundary?

I Crop

I Pad
I Extend
I Wrap
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What To Do At The Boundary?

I Crop
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Convolution
Definition
Convolution of an image I by a kernel H is given by

I′(u, v) =
∑

(i,j)∈RH

I(u− i, v− j) · H(i, j)

This is denoted: I′ = I ∗ H

I Notice this is the same as correlation with H, but
with negative signs on the I indices

I Equivalent to vertical and horizontal flipping of H:

I′(u, v) =
∑

(−i,−j)∈RH

I(u + i, v + j) · H(−i,−j)



Linear Operators

Definition
A linear operator F on an image is a mapping from one
image to another, I′ = F(I), that satisfies:

1. F(cI) = cF(I),
2. F(I1 + I2) = F(I1) + F(I2),

where I, I1, I2 are images, and c is a constant.

Both correlation and convolution are linear operators



Infinite Image Domains

Let’s define our image and kernel domains to be infinite:

Ω = Z× Z

Remember Z = {. . . ,−2,−1, 0, 1, 2, . . .}

Now convolution is an infinite sum:

I′(u, v) =
∞∑

i=−∞

∞∑
i=−∞

I(u− i, v− j) · H(i, j)

This is denoted I′ = I ∗ H.



Infinite Image Domains

The infinite image domain Ω = Z× Z is just a trick to
make the theory of convolution work out.

We can still imagine that the image is defined on a
bounded (finite) domain, [0,w]× [0, h], and is set to
zero outside of this.



Properties of Convolution

Commutativity:

I ∗ H = H ∗ I

This means that we can think of the image as the kernel
and the kernel as the image and get the same result.

In other words, we can leave the image fixed and slide
the kernel or leave the kernel fixed and slide the image.



Properties of Convolution

Associativity:

(I ∗ H1) ∗ H2 = I ∗ (H1 ∗ H2)

This means that we can apply H1 to I followed by H2, or
we can convolve the kernels H2 ∗ H1 and then apply the
resulting kernel to I.



Properties of Convolution

Linearity:
(a · I) ∗ H = a · (I ∗ H)

(I1 + I2) ∗ H = (I1 ∗ H) + (I2 ∗ H)

This means that we can multiply an image by a constant
before or after convolution, and we can add two images
before or after convolution and get the same results.



Properties of Convolution

Shift-Invariance:
Let S be the operator that shifts an image I:

S(I)(u, v) = I(u + a, v + b)

Then
S(I ∗ H) = S(I) ∗ H

This means that we can convolve I and H and then shift
the result, or we can shift I and then convolve it with H.



Properties of Convolution

Theorem: The only shift-invariant, linear operators on
images are convolutions.



Computational Complexity of Convolution

If my image I has size M × N and my kernel H has size
(2R + 1)× (2R + 1), then what is the complexity of
convolution?

I′(u, v) =
R∑

i=−R

R∑
j=−R

I(u− i, v− j) · H(i, j)

Answer: O(MN(2R + 1)(2R + 1)) = O(MNR2).
Or, if we consider the image size fixed, O(R2).



Which is More Expensive?

The following both shift the image 10 pixels to the left:

1. Convolve with a 21× 21 shift operator (all zeros
with a 1 on the right edge)

2. Repeatedly convolve with a 3 × 3 shift operator 10
times

The first method requires 212 · wh = 441 · wh.
The second method requires (9 · wh) · 10 = 90 · wh.



Some More Filters

Box Gaussian Laplace



Edge Detection



What is an Edge?

Image Value vs X-Position
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An abrupt transition in intensity between two regions



What is an Edge?

Image X-Derivative vs X-Position
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Image derivatives are high (or low) at edges



Review: Derivative of a Function

Given a function f : R→ R, its derivative is defined as

df
dx

(x) = lim
ε→0

f (x + ε)− f (x)

ε

Derivative of f is the slope of
the tangent to the graph of f



Derivatives of Discrete Functions

x

f(x)

Discrete function defined on integer values of x



Derivatives of Discrete Functions

x

f(x)

Slopes (derivatives) don’t match on left and right



Derivatives of Discrete Functions

x

f(x)

Instead take the average of the two (or secant)



Derivatives of Discrete Functions

x

f(x)

Instead take the average of the two (or secant)



Finite Differences

Forward Difference

∆+ f (x) = f (x + 1)− f (x) right slope

Backward Difference

∆− f (x) = f (x)− f (x− 1) left slope

Central Difference

∆ f (x) =
1
2

( f (x + 1)− f (x− 1)) average slope



Finite Differences as Convolutions

Forward Difference

∆+ f (x) = f (x + 1)− f (x)

Take a convolution kernel: H = [1 −1 0]

∆+ f = f ∗ H

(Remember that the kernel H is flipped in convolution)



Finite Differences as Convolutions

Central Difference

∆ f (x) =
1
2

( f (x + 1)− f (x− 1))

Convolution kernel here is: H =
[ 1

2 0 − 1
2

]
∆ f (x) = f ∗ H

Notice: Derivative kernels sum to zero!



Derivatives of Images

I Images have two parameters: I(x, y)

I We can take derivatives with respect to x or y
I Central differences:

∆x I = I ∗ Hx, and ∆y I = I ∗ Hy,

where Hx = [0.5 0 −0.5] and Hy =

−0.5
0

0.5





Derivatives of Images

x-derivative using central difference:

∗
[ 1

2 0 − 1
2

]
=



Derivatives of Images

y-derivative using central difference:

∗

 0.5
0
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Combining x and y Derivatives

The discrete gradient of I(x, y) is the 2D vector:

∇I(x, y) =

[
∆x I(x, y)
∆y I(x, y)

]

The gradient magnitude is

‖∇I(x, y)‖ =
√

(∆x I(x, y))2 + (∆y I(x, y))2



Image Gradient

I Gradient points in direction of
maximal increasing intensity

I Length (magnitude) of
gradient equals amount of
change in that direction

I Gradient is perpendicular (90
degrees) to edge contour



Convolutional Neural Networks
(CNNs)



Learning a Filter

w1 w2 w3

w4 w5 w6

w7 w8 w9

?

Filter consists of weights that need to be learned.



Convolutional Neural Networks

http://towardsdatascience.com/

http://towardsdatascience.com/

