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Deep generative modelling

1. Learn a neural network to approximate p(x)
2. Sample from learnt p’(x) to generate novel data 

https://data-science-blog.com/blog/2022/02/19/deep-generative-modelling/



Types of Generative models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Background | Variational Autoencoders (VAE)

The VAE generative process is:

● first, a latent representation z 
is sampled from the prior 
distribution p(z)

● second, the data x is sampled 
from the conditional 
likelihood distribution p(x|z)

Note that, the KL-divergence between two 
gaussians p & q, is defined as follows:



Background | Variational Autoencoders (VAE)

The “probabilistic decoder” is  
defined by p(x|z), that describes 
the distribution of the decoded 
variable given the encoded one

The “probabilistic encoder” is 
defined by p(z|x), that describes 
the distribution of the encoded 
variable given the decoded one

We use Bayes’ theorem to get: 



Background | Variational Autoencoders (VAE)

In theory, we know p(z) and p(x|z), we 
can use the Bayes theorem to compute 
p(z|x) 

However, this kind of computation is 
often intractable due to the integral in 
the denominator 

Here we are going to approximate p(z|x) 
by a Gaussian distribution q_x(z) whose 
mean and covariance are defined by two 
functions, g and h, of the parameter x.

Overall,



Denoising Diffusion Probabilistic Models (DDPM)

Forward diffusion: Markov chain of diffusion steps to slowly add gaussian noise to data

Reverse diffusion: A model is trained to generate data from noise by iterative denoising



DDPM | Forward diffusion

We add a small amount of gaussian noise to a sample x0 in T timesteps to 
produces noised samples, {x1, x2, … , xT}. The steps are controlled by the noise 
schedule as follows:



DDPM | Reverse Diffusion 

We learn a neural network model (pθ) to approximate these conditional 
probabilities q(x(t-1) | xt) in order to run the reverse diffusion process as follows:



Training the denoising model

For training, we can form variational upper bound that is commonly used for 
training variational autoencoders,

which simplifies to,

and where q(x(t-1) | xt, x0) is a tractable posterior:



Parameterization of the diffusion model

The model is primarily trained on the term L(t-1) above, which is a KL-divergence 
of two normal distributions, q(x(t-1) | xt, x0) and p

ፀ
(x(t-1) | xt) and has a simple 

form:

In Ho et al. NeurIPS 2020, above is reparameterized to be a noise-prediction 
network instead of a mean-prediction network,

https://arxiv.org/abs/2006.11239


Parameterization of the diffusion model

Note that λt above is a just a time-dependent reweighting parameter.

It is observed that for training the model, it is helpful if we set  λt = 1.

Making the objective even simpler,



Overall algorithm (like we see it!)



Conditional diffusion models

In conditional diffusion models, an 
additional input, y (eg. a class label or a 
text sequence) is available and we try to 
model the conditional distribution p(x | y) 
instead. 

This allows us to generate data given the 
conditioning signal.

Some examples generated from Google’s 
Imagen [1], and OpenAI’s Dalle-2 [2] on 
the right.

A medieval painting of the 
wifi not working

A still of Homer Simpson in 
Psycho (1960)

An Alpaca is smiling and 
underwater in the pool

A tulip pushing a baby 
carriage

[1] Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).
[2] Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



Conditional diffusion models

In practice, the denoising model p(xt-1 | xt, y) is also conditioned on ‘y’ in addition 
to the image from the previous timestep, xt 



Practical considerations

● Scalar conditioning: encode scalar as a vector embedding, simple spatial 

addition or adaptive group normalization layers.

● Image conditioning: channel-wise concatenation of the conditional image.

● Text conditioning: single vector embedding – spatial addition or adaptive 

group norm / a seq of vector embeddings – cross-attention.

https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/


Score-model based guidance

Using the gradient of an independently pre-trained score model as guidance
Given a conditional model p(xt | y), we use gradients from an extra score model 
p(y | xt) during sampling.



CLIP guidance

Given an image x and a prompt y, a 
CLIP model computes the alignment 
cos_sim(x, y) which indicates how 
similar the image and the prompt are. 

To use this signal for guidance, we 
assume that the CLIP similarity score 
is a good estimation of the function 
p(y|x) 

The gradient of this score wrt the 
noised image, xt at timestep t is used 
as the guidance gradient 

Note that this requires the CLIP model to 
compute score for noised-images at 
intermediate timesteps, hence a 
noised-CLIP model is trained for guidance



Classifier-free guidance

Given both a conditional and an unconditional diffusion model, we can design an 
“implicit” classifier as follows:

In practice, p(x|c) and p(x) are trained together by randomly dropping the 
conditioning signal with a certain probability during training. 

Using above, the score-gradient becomes:



GLIDE | OpenAI

● A 64x64 base diffusion model
● A 64 -> 256 conditional 

super-resolution model
● Evaluates both classifier-free and 

CLIP guidance

CLIP guidance: Use the CLIP alignment 
score p(x, y) as a estimation of p(y | x)

Nichol, Alex, et al. "Glide: Towards photorealistic image generation and editing with text-guided diffusion models." arXiv preprint arXiv:2112.10741 (2021).
Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



DALL.E 2 | OpenAI

● 1kx1k text-conditioned image 
generation 

● Uses a prior to produce CLIP 
embeddings conditioned on the 
text-caption

● Uses a decoder to produce images 
conditioned on the CLIP 
embeddings

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open AI

Conditioning on CLIP-embeddings

● Helps capture multimodal 
representations

● The bi-partite latent enables 
several text-controlled image 
manipulation tasks

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open AI

Proposes 2 types of priors:

1. Autoregressive prior
Quantize image embeds into a 
sequence of discrete codes and 
predict them autoregressively
 

2. Diffusion prior
Model continuous image 
embeddings by diffusion 
models conditioned on caption

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open AI

Decoder: produces images 
conditioned on CLIP image 
embeddings (and text caption)

The model is trained as cascaded 
diffusion models 64->256->1024

It is observed that classifier-free 
guidance works better for sample 
quality here. 

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open AI

Interpolate CLIP embeddings to generate different interpolation trajectories

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open AI

Change the image CLIP embedding towards the difference of the text CLIP embeddings 
of two prompts. Note that decoder latent is kept as a constant.

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



Imagen | Google Research

● Generates 1kx1k images
● Exceptional photo-realism
● Extremely simple parameterization
● SOTA on quantitative and 

qualitative benchmarks
● Proposes a new qualitative 

benchmark (drawbench)

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

Model details

● Cascaded diffusion models
64 -> 256 -> 1024

● Classifier-free guidance and 
dynamic thresholding

● Frozen large pretrained language 
models as text encoders (T5-XXL)

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

Main discoveries

● Better text-conditioning signal is 
important, i.e. large frozen 
text-encoders are used, eg. T5-XXL

● Stronger classifier-free guidance 
leads to better text-alignment but 
worse image quality

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

The paper also proposes a new benchmark called the “drawbench”

● Collection of 200 prompts that test semantic understanding and image diversity.

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

Imagen achieves SOTA using 
auto-evaluation scores on 

COCO dataset

Imagen is preferred over recent work by human 
raters in sample quality & image-text alignment on 

DrawBench

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



NASDM: Nuclei-Aware Semantic 
Histopathology Image Generation Using 

Diffusion Models
Accepted at MICCAI 2023

Shrivastava, Aman, and P. Thomas Fletcher. "NASDM: Nuclei-Aware Semantic Histopathology Image Generation 
Using Diffusion Models." arXiv preprint arXiv:2303.11477 (2023).



Overview

The diffusion model can 
generate realistic 
histopathological patches 
conditioned on the 
semantic locations of six 
different types of nuclei.



Method

We condition the diffusion 
model on the 7-channel 
semantic mask comprising 
of 6 individual nuclei 
semantics and an 
additional edge mask 
highlighting the nuclei 
instances overall



Results

We train the model on the 
lizard dataset at 20× 
magnification split into 
128 × 128 pixels patches

For training, we extract a 
total of 54,735 patches for 
training and 4,991 patches 
as a held-out set



Key insights

1. Diffusion models are extremely powerful and can generate hyper-realistic 
images which are hard to distinguish from real ones

2. The model already achieves state-of-the-art performance quantitatively
3. The model can effectively processes the semantic conditioning information and 

generate images consistent with the mask



Future directions

1. Train a model to generate the masks as well to design a truly 

end-to-end tissue generation framework that can from scratch 

generate a tissue patch and a corresponding nuclei mask

2. Extend the generation to other types of organ tissue i.e. illial, 

glioma, breast, bladder, liver etc. 
a. Ideally the model should be able to take this information as a conditioning 

signal

3. Study if a nuclei segmentation model can be improved by 

addition of synthetic annotated images in the training dataset

4. Design a model to generate patches conditioned on neighbouring 

patches to enable generation of an entire synthetic whole slide 

image



Questions?


