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Deep generative modelling

1. Learn a neural network to approximate p(x)
2. Sample from learnt p’(x) to generate novel data
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https://data-science-blog.com/blog/2022/02/19/deep-generative-modelling/



Types of Generative models

GAN: Adversarial / Discriminator Generator
. X X Z
training D(x) G(z)
VAE: maximize X Encoder 7 @
variational lower bound q4(2[x) po(x|z)
Flow-based models: x Flow Z Inllfrse
Invertible transform of f(x) [ (2)
distributions
Diffusion models:. X0 X1 Xo
Gradually add Gaussian - - - -- [e---=----- FEE R --------
noise and then reverse

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Background | Variational Autoencoders (VAE)

The VAE generative process is:

first, a latent representation z
iIs sampled from the prior
distribution p(z)

second, the data x is sampled
from the conditional
likelihood distribution p(x|z)

neural network

neural network

encoder

decoder
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loss = ||x-xX|]? + KL[ SN, D1 = || x-d() || + KL ,N(O, )]

Note that, the KL-divergence between two
gaussians p & q, is defined as follows:
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Background | Variational Autoencoders (VAE)

The “probabilistic decoder” is
defined by p(x|z), that describes
the distribution of the decoded
variable given the encoded one
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The “probabilistic encoder” is

defined by p(z|x), that describes loss = ||x-X]] + KLI N©, D] = [|x-d()|]2 + KLI /N, 1) ]
the distribution of the encoded
variable given the decoded one

, _ gy = P@RIP(2) - p(z]2)p(2)
We use Bayes’ theorem to get: p(z|z) (@) T pla]w)p(u)du




Background | Variational Autoencoders (VAE)

In theory, we know p(z) and p(x|z), we (9°h") = argmin KL(g:(2),p(elo))
can use the Bayes theorem to compute — (Ez%(logqx(z))_mw (lg%»
(g,h)eGxH z
p(z|x) = orgmin (Bur, (08:(2)) ~ Eung, (089(2)) — Evvg, (l08p(a]2)) + Exvg, (0 p(x)))

(g,h)EGxH
= argmax (E.., (0g3(a]2)) ~ KL(@:(2) ()
However, this kind of computation is
often intractable due to the integral in

the denominator

= angmax (Bov,, (<12LO0) K100

(9,h)EGxH

Here we are going to approximate p(z|x)  Overall,

by a Gaussian distribution q_x(z) whose  (p & 1) = argmax (EZN% (_Hx_zﬂ) _KL(qm(z)’p(z)))
mean and covariance are defined by two Phahjsraens ¢

functions, g and h, of the parameter x.

92(2) = N(g(2), h(z)) geG heH



Denoising Diffusion Probabilistic Models (DDPM)

Forward diffusion: Markov chain of diffusion steps to slowly add gaussian noise to data

Reverse diffusion: A model is trained to generate data from noise by iterative denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)



DDPM | Forward diffusion

Forward diffusion process (fixed)

Data Noise

We add a small amount of gaussian noise to a sample x,in T timesteps to
produces noised samples, {x,, X,, ... , X;}. The steps are controlled by the noise
schedule as follows:

T
g(xe|xi-1) = N(xe5 /1 — Bixe—1, BeI)  q(x1.7]|%0) = HQ(xt|xt—1)
1




DDPM | Reverse Diffusion

_ Reverse denoising process (generative)

Data Noise
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We learn a neural network model (pg) to approximate these conditional

probabilities q(x(t_l) | x,) in order to run the reverse diffusion process as follows:

T

Po(xo:T) = p(xT) UP&(Xt—ﬂxt) Pe(xt—1|xt) = N(Xt—l; Ma(xt,t), 29(xt,t))




Training the denoising model

For training, we can form variational upper bound that is commonly used for
training variational autoencoders,
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which simplifies to,

L=E, \DKL(Q(XT|X0)HP(XT)Z+ Z Dy (q(x¢-1%4, X0)||pe(xt—1\xt))j 10gp0(><0|x1)2}
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and where q(x(t_l) | X, X,) is a tractable posterior:
q(X¢—1|%¢,X0) = N(Xt—l;/jt(xtaxo)agtl)a where fi;(x, Xo) 1= O_étﬁlﬁtXOJr L—Al - at*l)Xt and Bt e Lo @tilﬁt

1—0y 1—ay 1—ay



Parameterization of the diffusion model

The model is primarily trained on the term L(t—l) above, which is a KL-divergence
of two normal distributions, q(x(t_l) | X, X,) and pe(x(t_l) | x,) and has a simple
form:
1.
Li-1 = Dic(q(Xe—1[%e Xo)l[Po(xe-1[%¢)) = By | 5—[fie(xe, Xo) — He(Xt,t)HQ] +C
t

In Ho et al. NeurlPS 2020, above is reparameterized to be a noise-prediction
network instead of a mean-prediction network,
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https://arxiv.org/abs/2006.11239

Parameterization of the diffusion model

Ly = EXONQ(XO),6~N(O,I) |:2Ut2(1 — Bt)(l — @t) ||6 - 69(@ xp+v1— O_‘tj>t)||2:| + ¢
N Y, e

Note that A_above is a just a time-dependent reweighting parameter.
It is observed that for training the model, it is helpful if we set A = 1.

Making the objective even simpler,

Lsimplc - EX()N(](XQ),GNN(O,I),tNU(LT) [||€ - 69( Vit X+ v I —aqy €, t)||2]
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Overall algorithm (like we see it!)

Algorithm 1 Training Algorithm 2 Sampling
;: repeat (x0) 1: x7 ~N(0,I)
i 2: fort="7T,...,1d
3: t~ Uniform({1,...,T}) 3 0er N(6 I)’ 0
4 € r~v N(O, I) : <
5: Take gradient descent step on 4 xt-1= \/%7 (Xt - \}1—T£:€9 (xtat)) + 012
Vo ||e — €p(\/arxo + V1 — aq€ t)”2 5: end for
6: until converged 6: return x,




Conditional diffusion models

In conditional diffusion models, an
additional input, y (eg. a class label or a
text sequence) is available and we try to my v\
model the conditional distribution p(x | y) Amedieval painting of the Astill of Homer Simpson in
. wifi not working Psycho (1960)
instead.

This allows us to generate data given the
conditioning signal.

Some examples generated from Google’s
Imagen [1], and OpenAl’s Dalle-2 [2] on
the right.

An Alpaca is smiling and A tulip pushing a baby
underwater in the pool carriage

[1] Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).
[2] Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



Conditional diffusion models

In practice, the denoising model p(x,_, | x,, y) is also conditioned on ‘y’ in addition
to the image from the previous timestep, x,

T
Reverse process: pg(xox|c) = p(xz) [ [ po(xe-1lxt,€),  po(xe-1xt,€) = N (x¢-15 g (%1, t, €), B (%t £, )
i=1

Variational
upper bound: Lg(xo|c) = Eq [ LT(x0) + ;DKL(Q(xt——llxt,XO) | Po(X¢—1]x¢, €)) — log pg(x0[x1,¢) | -
t>



Practical considerations

e Scalar conditioning: encode scalar as a vector embedding, simple spatial
addition or adaptive group normalization layers.

e |Image conditioning: channel-wise concatenation of the conditional image.

e Text conditioning: single vector embedding — spatial addition or adaptive

group norm / a seq of vector embeddings — cross-attention.



https://cvpr2022-tutorial-diffusion-models.github.io/

Score-model based guidance

Using the gradient of an independently pre-trained score model as guidance
Given a conditional model p(x, | y), we use gradients from an extra score model
p(y | x,) during sampling.

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(x:), Xg(x:)), classi-
fier p,(y|z:), and gradient scale s.

Input: class label y, gradient scale s model Classifier gradient
z7 < sample from N (0, I)

for all ¢ from 7" to 1 do /
Py X /“1’9(xt)a Ee(xt)
z;—1 < sample from NV (u + sX V,, log py(y|z:), X)

end for
return z




CLIP guidance

Given an image x and a prompty, a
CLIP model computes the alignment
cos_sim(x, y) which indicates how

similar the image and the prompt are.

To use this signal for guidance, we
assume that the CLIP similarity score
Is a good estimation of the function

p(ylx)

The gradient of this score wrt the
noised image, x, at timestep t is used
as the guidance gradient
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Note that this requires the CLIP model to
compute score for noised-images at
intermediate timesteps, hence a
noised-CLIP model is trained for guidance



Classifier-free guidance

Given both a conditional and an unconditional diffusion model, we can design an
“Iimplicit” classifier as follows:

p(elxt) o< p(x¢|e)/p(x¢)

— S

Conditional diffusion model Unconditional diffusion model

In practice, p(x|c) and p(x) are trained together by randomly dropping the
conditioning signal with a certain probability during training.

Using above, the score-gradient becomes:

Vi [log p(x¢|c) + wlog p(c|x;)] = Vx,[log p(xt|c) + w(log p(xi|c) — log p(xt))]
= Vx[(1 + w)log p(xt|c) — wlog p(x:)]



GLIDE | OpenAl

o A 64x64 base diffusion model
e A 64 ->256 conditional
super-resolution model

e Evaluates both classifier-free and “aboat in the canals of venice”  PATAE 07 for 1 the syle
CLIP guidance

CLIP guidance: Use the CLIP alignment
score p(x, y) as a estimation of p(y | x)

“a crayon drawing of a space elevator” “a futuristic city in synthwave style”

Nichol, Alex, et al. "Glide: Towards photorealistic image generation and editing with text-guided diffusion models." arXiv preprint arXiv:2112.10741 (2021).
Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International Conference on Machine Learning. PMLR, 2021.



DALL.E 2 | OpenAl

e 1kx1k text-conditioned image
generation

e Uses a prior to produce CLIP
embeddings conditioned on the
text-caption

e Uses a decoder to produce images
conditioned on the CLIP
embeddings

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open Al

Conditioning on CLIP-embeddings

e Helps capture multimodal B ceobeae [ fimg
- o encoder
representations “a corgi :
playing a
flame E _| o e
. . throwing —

e The bi-partite latent enables  tumper” El

several text-controlled image ...~ < LU R_[9.8.9.

. . O O
manipulation tasks -

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open Al

Proposes 2 types of priors:

1. Autoregressive prior

CLIP objective

Quantize image embeds into a — B
sequence of discrete codes and p'ayﬂ‘;‘a: E ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
predict them autoregressively t:&mgg G

2. Diffusion prior - 3-3-
Model continuous image prier

embeddings by diffusion
models conditioned on caption

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).

img
encoder

decoder



DALL.E 2 | Open Al

Decoder: produces images
conditioned on CLIP image
embeddings (and text caption)

The model is trained as cascaded
diffusion models 64->256->1024

It is observed that classifier-free
guidance works better for sample
quality here.

“a corgi
playing a
flame
throwing
trumpet”

CLIP objective

\/

img
encoder

66000

@)
—O>0O~»
O O

-

prior

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).

decoder




DALL.E 2 | Open Al

Interpolate CLIP embeddings to generate different interpolation trajectories

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



DALL.E 2 | Open Al

a photo of an adult lion — a photo of lion cub

Change the image CLIP embedding towards the difference of the text CLIP embeddings
of two prompts. Note that decoder latent is kept as a constant.

Ramesh, Aditya, et al. "Hierarchical text-conditional image generation with clip latents." arXiv preprint arXiv:2204.06125 (2022).



Imagen | Google Research

Generates 1kx1lk images
Exceptional photo-realism
Extremely simple parameterization
SOTA on quantitative and
qualitative benchmarks

e Proposes a new qualitative
benchmark (drawbench)

W o

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow.

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

Model details

e (Cascaded diffusion models
64 -> 256 -> 1024

e C(lassifier-free guidance and
dynamic thresholding

e Frozen large pretrained language
models as text encoders (T5-XXL)

Text

A

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

164 x 64 Image

Super-Resolution
Diffusion Model

256 x 256 Image

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

Main discoveries

e Better text-conditioning signal is
important, i.e. large frozen
text-encoders are used, eg. Th-XXL

e Stronger classifier-free guidance
leads to better text-alignment but
worse image quality

Text

A

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

164 x 64 Image

Super-Resolution
Diffusion Model

256 x 256 Image

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

The paper also proposes a new benchmark called the “drawbench”

e Collection of 200 prompts that test semantic understanding and image diversity.

A pear cut into seven pieces A photo of a confused grizzly bear A small vessel propelled on water
arranged in a ring. in calculus class. by oars, sails, or an engine.

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



Imagen | Google Research

Zero'ShOt ‘J Imagen D DALL-E 2 ,, Imagen D GLIDE J Imagen D VQGAN+CLIP # Imagen D Latent Diffusion
Model FID-30K  ‘pro"sie p—
AttnGAN [76] 35.49 V — *
DM-GAN [83] 32.64 e - ;
DF-GAN [69] 21.42 50% " \
DM-GAN + CL [78] 20.79
XMC-GAN [81] 9.33 ﬂ &i m ﬁ r
LAFITE [82] 8.12 - |
Make-A-Scene [22] 7.55 Alignment Fidelity Alignment Fidelity Alignment Fidelity Alignment Fidelity
DALL-E [53] 17.89
éﬁ%?{ﬁ?l fg-gj Imagen is preferred over recent work by human
DALL-E 2 [54] 10.39 raters in sample quality & image-text alignment on
Imagen (Our Work) 7.27 DrawBench

Imagen achieves SOTA using
auto-evaluation scores on

COCO dataset

Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding." arXiv preprint arXiv:2205.11487 (2022).



