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CIFAR-10

32 × 32 × 3 = 3,072 dimensions
10 classes
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Manifold Hypothesis
Real data lie near lower-dimensional manifolds
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Manifold Learning

▶ Learn a model/representation for the data manifold
▶ Often involves finding a flat coordinate chart
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Manifold Learning

From scikit-learn.org
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Volumes in High Dimensions

ε

(0,0,...,0)

(1,1,...,1)
What is the volume of the unit
d-cube shrunk by some small
amount in each dimension?

V = (1 − 2ϵ)d

Approaches 0 as d → ∞

Example: 256 × 256 × 3 images, ϵ = 1
256

V ≈ 2.0 × 10−670
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Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
X,Y ∼ Unif([0, 1]d)

What is the distribution of the distance between them?
D = ∥X − Y∥
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CIFAR-10

32 × 32 × 3 = 3,072 dimensions
10 classes



Distances in Real Data

CIFAR-10 Unif([0, 1]3072)



Manifold-valued Data

▶ Manifold already known, not learned

▶ Manifold arises from natural non-linear constraints
on data

▶ Linear data analyses (in fact, vector space
operations) violate these constraints
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Directional Data

Data living on a circle (S1) or sphere (S2), etc.

▶ Orientation of molecules in protein structure
▶ Direction of robot or autonomous vehicle
▶ Position on the earth
▶ Motion capture: orientation of joints
▶ Time (time of day, day of the year, etc.)
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Directional Data: Diffusion MRI

Voxel features are directions of axons in brain



Shape Manifolds

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Manifolds

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Manifolds

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Manifolds

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Manifolds

x

y

d(x, y)

A metric space structure provides a comparison
between two shapes.



Shape Statistics: Averages
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Shape Statistics: Variability

Shape priors in segmentation



Shape Application: Bird Identification

American Crow Common Raven



Shape Statistics: Classification

http://sites.google.com/site/xiangbai/animaldataset

http://sites.google.com/site/xiangbai/animaldataset


Information Geometry

Parameters of a probability model live on manifolds

Example: covariance matrix of a 2D Gaussian
distribution:
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Σ ∈ PD(2) is of the form

Σ =

(
a b
b c

)
,

ac − b2 > 0, a > 0.

(positive-definite constraint)
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Deep Generative Models

Input: Output:

z ∈ Rd g=gL◦gL−1◦···◦g1−−−−−−−−−→ x ∈ RD

z ∼ N(0, I)

d << D



These are not real people

Karras et al., CVPR 2020, and thispersondoesnotexist.com
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Generative Models as Immersed Manifolds

z ∈ Rd g=gL◦gL−1◦···◦g1−−−−−−−−−−→ x ∈ RD

M
g

Z

X

Shao, Kumar, Fletcher, The Riemannian Geometry of Deep Generative Models, DiffCVML 2018.


