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CIFAR-10

32 × 32 × 3 = 3,072 dimensions
10 classes
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Manifold Hypothesis
Real data lie near lower-dimensional manifolds
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Manifold Learning

▶ Learn a model/representation for the data manifold
▶ Often involves finding a flat coordinate chart
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Volumes in High Dimensions

ε

(0,0,...,0)

(1,1,...,1)
What is the volume of the unit
d-cube shrunk by some small
amount in each dimension?

V = (1 − 2ϵ)d

Approaches 0 as d → ∞

Example: 256 × 256 × 3 images, ϵ = 1
256

V ≈ 2.0 × 10−670
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Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
X,Y ∼ Unif([0, 1]d)

What is the distribution of the distance between them?
D = ∥X − Y∥



Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
X,Y ∼ Unif([0, 1]d)

What is the distribution of the distance between them?
D = ∥X − Y∥



d = 1

d = 2 d = 10

d = 100 d = 1,000 d = 10,000



d = 1 d = 2

d = 10

d = 100 d = 1,000 d = 10,000



d = 1 d = 2 d = 10

d = 100 d = 1,000 d = 10,000



d = 1 d = 2 d = 10

d = 100

d = 1,000 d = 10,000



d = 1 d = 2 d = 10

d = 100 d = 1,000

d = 10,000



d = 1 d = 2 d = 10

d = 100 d = 1,000 d = 10,000



CIFAR-10

32 × 32 × 3 = 3,072 dimensions
10 classes



Distances in Real Data

CIFAR-10 Unif([0, 1]3072)



Manifold-valued Data

▶ Manifold already known, not learned

▶ Manifold arises from natural non-linear constraints
on data

▶ Linear data analyses (in fact, vector space
operations) violate these constraints
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Directional Data

Data living on a circle (S1) or sphere (S2), etc.

▶ Orientation of molecules in protein structure
▶ Direction of robot or autonomous vehicle
▶ Position on the earth
▶ Motion capture: orientation of joints
▶ Time (time of day, day of the year, etc.)
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Directional Data: Diffusion MRI

Voxel features are directions of axons in brain



Shape Manifolds

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.
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Shape Manifolds

x

y

d(x, y)

A metric space structure provides a comparison
between two shapes.
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Shape Statistics: Variability

Shape priors in segmentation



Shape Application: Bird Identification

American Crow Common Raven



Shape Statistics: Classification

http://sites.google.com/site/xiangbai/animaldataset

http://sites.google.com/site/xiangbai/animaldataset


Information Geometry

Parameters of a probability model live on manifolds

Example: covariance matrix of a 2D Gaussian
distribution:
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Σ ∈ PD(2) is of the form

Σ =

(
a b
b c

)
,

ac − b2 > 0, a > 0.

(positive-definite constraint)
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Applications in AI

Latest trends in Artificial Intelligence from a Manifold lens:

● Unsupervised Learning

○ Automatic discovery of intrinsic structure of data, i.e. manifold



Applications in AI

Latest trends in Artificial Intelligence from a Manifold lens:

● Unsupervised Learning

○ Automatic discovery of intrinsic structure of data, i.e. manifold

● Self-supervised Learning

○ Embeds data on a manifold with a known metric



Applications in AI

Latest trends in Artificial Intelligence from a Manifold lens:

● Unsupervised Learning

○ Automatic discovery of intrinsic structure of data, i.e. manifold

● Self-supervised Learning

○ Embeds data on a manifold with a known metric

● Graph Neural Networks (GNN)

○ Graphs are discrete representations of underlying manifold



Applications in AI

Latest trends in Artificial Intelligence from a Manifold lens:

● Unsupervised Learning

○ Automatic discovery of intrinsic structure of data, i.e. manifold

● Self-supervised Learning

○ Embeds data on a manifold with a known metric

● Graph Neural Networks (GNN)

○ Graphs are discrete representations of underlying manifold

● Generative Modeling

○ VAEs learn the manifold as their latent representation

○ Diffusion models simulate a noising process through manifolds



Unsupervised Learning

Learns the intrinsic structure by leveraging patterns present in the data 

without explicit labels.

Clustering

 These clusters correspond to modes on the underlying manifold



Self-supervised Learning

Contrastive (Self-)supervised methods project the data to a known 

manifold to minimize the distance between positive samples

Image src: Khosla, Prannay, et al. "Supervised contrastive learning." Advances in neural information processing systems 33 (2020): 18661-18673.



Graph Neural Networks

Graphs are discrete approximations of continuous manifolds. 

Where nodes are data points and edges are relationships

Image src: https://graphdeeplearning.github.io/post/benchmarking-gnns/

Essentially, GNNs help characterize the manifold discreetly by learning 

an embedded representation of the graphical data 



Generative Modeling | VAE

Autoencoders learn a lower-dimensional latent space that helps 

navigate the high-dimensional manifold of real data

Image src: https://synthesis.ai/2023/02/07/generative-ai-i-variational-autoencoders/



Generative Modeling | Diffusion Models

Diffusion models are just nested VAEs & use geometry of underlying 
manifolds to simulate the process of spreading noise through them

Image src: https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch

These models can be conditioned on text i.e. can generate images 
given their descriptions e.g. OpenAI’s Dall-E2, Stable Diffusion etc.
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