Introduction

Geometry of Data

August 22, 2023
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Uniform Random Images

just kidding!



Manifold Hypothesis

Real data lie near lower-dimensional manifolds
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Manifold Learning
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Manifold Learning
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Volumes in High Dimensions

(L1,..,1)

What is the volume of the unit
d-cube shrunk by some small
amount in each dimension?
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Volumes in High Dimensions

(L1,..,1)

What is the volume of the unit
d-cube shrunk by some small
amount in each dimension?

™

V=(1-2e!

Approaches 0 as d — oo

(0,0,...0)

Example: 256 x 256 X 3 images, € = 5

V ~20x 10767



Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
X, Y ~ Unif([0, 1]9)



Distances in High Dimensions

Sample two points uniformly from the unit d-cube:
X, Y ~ Unif([0, 1]9)

What is the distribution of the distance between them?
D=|X-Y|
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Distances in Real Data

20 30 40 20

CIFAR-10



Manifold-valued Data

» Manifold already known, not learned
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Manifold-valued Data

» Manifold already known, not learned

» Manifold arises from natural non-linear constraints
on data

» Linear data analyses (in fact, vector space
operations) violate these constraints



Directional Data
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Directional Data

Data living on a circle (S') or sphere (5%), etc.
» Orientation of molecules in protein structure
» Direction of robot or autonomous vehicle
» Position on the earth
» Motion capture: orientation of joints
>

Time (time of day, day of the year, etc.)



ion MRI

Diffus

Directional Data

NNRIELY

Voxel features are directions of axons in brain



Shape Manifolds

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.
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Shape Manifolds

A metric space structure provides a comparison
between two shapes.



Shape Statistics: Averages
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Shape Statistics: Variability

-
Shape priors in segmentation




Shape Application: Bird ldentification

American Crow Common Raven




Shape Statistics: Classification
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http://sites.google.com/site/xiangbai/animaldataset

Information Geometry

Parameters of a probability model live on manifolds



Information Geometry
Parameters of a probability model live on manifolds

Example: covariance matrix of a 2D Gaussian
distribution:

Y. € PD(2) is of the form

a b
== (5 0).

ac—b*>0, a>0.

1 (positive-definite constraint)
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e Unsupervised Learning

o Automatic discovery of intrinsic structure of data, i.e. manifold
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Applications in Al

Latest trends in Artificial Intelligence from a Manifold lens:

e Unsupervised Learning

o Automatic discovery of intrinsic structure of data, i.e. manifold

e Self-supervised Learning
o Embeds data on a manifold with a known metric

e Graph Neural Networks (GNN)

o Graphs are discrete representations of underlying manifold

e Generative Modeling

o VAEs learn the manifold as their latent representation

o Diffusion models simulate a noising process through manifolds




Unsupervised Learning

Learns the intrinsic structure by leveraging patterns present in the data

without explicit labels.
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Clustering

These clusters correspond to modes on the underlying manifold



Self-supervised Learning

Contrastive (Self-)supervised methods project the data to a known

manifold to minimize the distance between positive samples
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Supervised Contrastive

Self Supervised Contrastive

Image src: Khosla, Prannay, et al. "Supervised contrastive learning." Advances in neural information processing systems 33 (2020): 18661-18673.



Graph Neural Networks

Graphs are discrete approximations of continuous manifolds.

Where nodes are data points and edges are relationships

: L Layer2: (i), (ef Layer £+ 1: (h+1), (ef¥1) MLP
Node feat, —2bedding 0, ¢ Laversillih de) B 5 A ™ . W > Node Predictions
Embeddin
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v Z hj7 ——————> Graph Prediction
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Essentially, GNNs help characterize the manifold discreetly by learning

an embedded representation of the graphical data

Image src: https://graphdeeplearning.github.io/post/benchmarking-gnns/



Generative Modeling | VAE

Autoencoders learn a lower-dimensional latent space that helps

navigate the high-dimensional manifold of real data

|

Japoouq
apoo iua1e-|
Decoder
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manifold of images latent space manifold of images

Image src: https://synthesis.ai/2023/02/07/generative-ai-i-variational-autoencoders/



Generative Modeling | Diffusion Models

Diffusion models are just nested VAEs & use geometry of underlying
manifolds to simulate the process of spreading noise through them

® Forward / noising process

O  Sample data p(xy) = turn to noise

£
Po(Xo) pr(X7)~N (0,1
Clean X X X Pure
0 T-1 .
sample noise

® Reverse [ denoising process

O Sample noise pr(xr) = turn into data

These models can be conditioned on text i.e. can generate images
given their descriptions e.g. OpenAl’s Dall-E2, Stable Diffusion etc.

Image src: https://scholar.harvard.edu/binxuw/classes/machine-learning-scratch
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