Introduction to Shape Manifolds

Geometry of Data

September 24, 2024

Shape Statistics: Averages

Shape Statistics: Variability

Shape priors in segmentation

Shape Statistics: Classification

757777772 4563481143 ナイスメンスールする \rightarrow Mel er an Ard et al. and \rightarrow Intellector WREADY WATER **MARTIN WAY 1 THE MACART START** <http://sites.google.com/site/xiangbai/animaldataset>

Shape Statistics: Hypothesis Testing

Testing group differences

Cates, et al. IPMI 2007 and ISBI 2008

Shape Application: Bird Identification

American Crow Common Raven

Shape Application: Box Turtles

http://www.austinsturtlepage.com/world_of_turtles/index-2.html

Shape Statistics: Regression

35 37 39 41 43

What is Shape?

Shape is the geometry of an object modulo position, orientation, and size.

Geometry Representations

- ▶ Landmarks (key identifiable points)
- Boundary models (points, curves, surfaces, level sets)
- ▶ Interior models (medial, solid mesh)
- ▶ Transformation models (splines, diffeomorphisms)

Landmarks

pseudo, quasi

From Dryden & Mardia, 1998

- ▶ ^A **landmark** is an identifiable point on an object that corresponds to matching points on similar objects.
- \blacktriangleright This may be chosen based on the application (e.g., by anatomy) or mathematically (e.g., by curvature).

Landmark Correspondence Shape and Registration

More Geometry Representations

Dense Boundary **Points**

Continuous Boundary (Fourier, splines)

Medial Axis (solid interior)

Transformation Models

From D'Arcy Thompson, *On Growth and Form*, 1917.

A metric space structure provides a comparison between two shapes.

Examples: Shape Spaces

Kendall's Shape Space Space of

Diffeomorphisms

Tangent Spaces

A **tangent vector** is the velocity of a curve on *M*.

The Exponential Map

Notation: $\mathrm{Exp}_p(X)$

- ▶ *p*: starting point on *M*
- ▶ *X*: initial velocity at *p*
- Output: endpoint of geodesic segment, starting at *p*, with velocity *X*, with same length as $||X||$

The Log Map

Notation: Log*^p* (*q*)

- \blacktriangleright Inverse of Exp
- \blacktriangleright *p*, *q*: two points in *M*
- \blacktriangleright Output: tangent vector at p , such that $\mathrm{Exp}_p(\mathrm{Log}_p(q)) = q$

▶ Gives distance between points: $d(p, q) = || \text{Log}_p(q) ||.$

Two geometry representations, *x*1, *x*2, are **equivalent** if they are just a translation, rotation, scaling of each other:

$$
x_2 = \lambda R \cdot x_1 + v,
$$

where λ is a scaling, R is a rotation, and v is a translation.

In notation: $x_1 \sim x_2$

Equivalence Classes

The relationship $x_1 \sim x_2$ is an **equivalence relationship**:

- ▶ Reflexive: $x_1 \sim x_1$
- ▶ Symmetric: $x_1 \sim x_2$ implies $x_2 \sim x_1$
- ▶ Transitive: $x_1 \sim x_2$ and $x_2 \sim x_3$ imply $x_1 \sim x_3$

We call the set of all equivalent geometries to *x* the **equivalence class** of *x*:

$$
[x] = \{y : y \sim x\}
$$

he set of all equivalence classes is our **shape space**.

Kendall's Shape Space

- Define object with k points.
- \blacktriangleright Represent as a vector in \mathbb{R}^{2k} .
	- Remove translation, rotation, and scale.
- End up with complex projective space, CP*k*−² .

Constructing Kendall's Shape Space

- \triangleright Consider planar landmarks to be points in the complex plane.
- An object is then a point $(z_1, z_2, \ldots, z_k) \in \mathbb{C}^k$.
- ▶ Removing **translation** leaves us with \mathbb{C}^{k-1} .
- ▶ How to remove **scaling** and **rotation**?

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z = re^{i\phi}$, with modulus r and argument ϕ .

Complex Multiplication:

$$
se^{i\theta} * re^{i\phi} = (sr)e^{i(\theta + \phi)}
$$

Multiplication by a complex number *seⁱ*^θ is equivalent to scaling by *s* and rotation by θ .

Historical Side Note

The history of Euler's formula: $e^{i\theta} = \cos\theta + i\sin\theta$

Video:

<https://www.youtube.com/watch?v=f8CXG7dS-D0>

Reading:

<http://eulerarchive.maa.org/hedi/HEDI-2007-08.pdf>

Removing Scale and Rotation

Multiplying a centered point set, $z = (z_1, z_2, \ldots, z_{k-1}),$ by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of z is an equivalence class:

$$
[\mathbf{z}] = \{ (wz_1, wz_2, \ldots, wz_{k-1}) : \forall w \in \mathbb{C} \}
$$

This gives complex projective space CP*k*−² – much like the sphere comes from equivalence classes of scalar multiplication in \mathbb{R}^n .

Alternative: Shape Matrices

Represent an object as a real $d \times k$ matrix. **Preshape process:**

- \blacktriangleright Remove translation: subtract the row means from each row (i.e., translate shape centroid to 0).
- \blacktriangleright Remove scale: divide by the Frobenius norm.

Orthogonal Procrustes Analysis

Problem:

Find the rotation R^* that minimizes distance between two $d \times k$ matrices A, B :

$$
R^* = \arg\min_{R \in \text{SO}(d)} \|RA - B\|^2
$$

Solution: Let $U\Sigma V^T$ be the SVD of $B\!A^T$, then

$$
R^* = UV^T
$$

Geodesics in 2D Kendall Shape Space

Let A and B be $2 \times k$ shape matrices

- 1. Remove centroids from *A* and *B*
- 2. Project onto sphere: $A \leftarrow A / ||A||, B \leftarrow B / ||B||$
- 3. Align rotation of *B* to *A* with OPA
- 4. Now a geodesic is simply that of the sphere, *S* 2*k*−1

The *intrinsic mean* of a collection of points x_1, \ldots, x_N in a metric space *M* is

$$
\mu = \arg\min_{x \in M} \sum_{i=1}^{N} d(x, x_i)^2,
$$

where $d(\cdot, \cdot)$ denotes distance in M.

Gradient of the Geodesic Distance

The gradient of the Riemannian distance function is

$$
\text{grad}_x d(x, y)^2 = -2 \text{Log}_x(y).
$$

So, gradient of the sum-of-squared distance function is

grad_x
$$
\sum_{i=1}^{N} d(x, x_i)^2 = -2 \sum_{i=1}^{N} \text{Log}_x(x_i).
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

$$
\mathsf{Input:}\ \mathbf{x}_1,\ldots,\mathbf{x}_N\in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{X}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

$$
\mu_0=\mathbf{x}_1
$$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \underline{\text{Log}_{\mu_k}(\mathbf{x}_i)}
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \mathrm{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \mathrm{Exp}_{\mu_k}(\delta \mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Gradient Descent Algorithm:

Input:
$$
\mathbf{x}_1, \ldots, \mathbf{x}_N \in M
$$

 $\mu_0 = \mathbf{x}_1$

$$
\delta\mu = \frac{1}{N} \sum_{i=1}^{N} \text{Log}_{\mu_k}(\mathbf{x}_i)
$$

$$
\mu_{k+1} = \text{Exp}_{\mu_k}(\delta\mu)
$$

Example of Mean on Kendall Shape Space

, $\mathbb{M}_{\%}$ N V V, W

Hand data from Tim Cootes

Example of Mean on Kendall Shape Space

Hand data from Tim Cootes

PGA of Kidney

Mode 1 Mode 2 Mode 3

PGA Definition

First principal geodesic direction:

$$
v_1 = \arg\max_{\|v\|=1} \sum_{i=1}^N \|\operatorname{Log}_{\bar{y}}(\pi_H(y_i))\|^2,
$$

where
$$
H = \operatorname{Exp}_{\bar{y}}(\operatorname{span}(\{v\}) \cap U).
$$

Remaining principal directions are defined recursively as

$$
v_k = \arg \max_{\|v\|=1} \sum_{i=1}^N \| \text{Log}_{\bar{y}}(\pi_H(y_i)) \|^2,
$$

where $H = \text{Exp}_{\bar{y}}(\text{span}(\{v_1, \ldots, v_{k-1}, v\}) \cap U).$

Tangent Approximation to PGA

Input: Data $y_1, \ldots, y_N \in M$ **Output:** Principal directions, $v_k \in T_uM$, variances, $\lambda_k \in \mathbb{R}$ \bar{v} = Fréchet mean of $\{v_i\}$ $u_i = \text{Log}_{\mu}(y_i)$ ${\bf S}=\frac{1}{N_-}$ $\frac{1}{N-1} \sum_{i=1}^{N} u_i u_i^T$ *i* $\{v_k, \lambda_k\}$ = eigenvectors/eigenvalues of S.

Where to Learn More

Books

- ▶ Dryden and Mardia, *Statistical Shape Analysis*, Wiley, 1998.
- ▶ Small, *The Statistical Theory of Shape*, Springer-Verlag, 1996.
- ▶ Kendall, Barden and Carne, *Shape and Shape Theory*, Wiley, 1999.
- ▶ Krim and Yezzi, *Statistics and Analysis of Shapes*, Birkhauser, 2006.