Geometry of Data

Schedule

This is a tentative schedule based on the previous year and is subject to change!

Day Title / Notes Reading Homework  
Tu 8/27 Introduction      
Th 8/29 Topology Basics Riemannian Geometry Notes (Section 1)    
Tu 9/3 Topology Basics cont. Riemannian Geometry Notes (Section 1) HW 1, Due Tu 9/17
LaTeX source for HW 1 (for reference)
 
Th 9/5 Manifold Basics RGN (Section 2)    
Tu 9/10 Manifold Basics cont. RGN (Section 2)    
Th 9/12 Tangent Spaces RGN (Section 2)    
Tu 9/17 Riemannian Geometry RGN (Section 3) HW 1 Due  
Th 9/19 Riemannian Geometry, cont. RGN (Section 3)    
Tu 9/24 Introduction to Shape Manifolds: Kendall’s Shape Space Kendall, 1984    
Th 9/26 Statistics on Manifolds: Frechet Mean Pennec, 1999    
Tu 10/1 Statistics on Manifolds: Principal Geodesic Analysis Fletcher 2019, Section 3    
Th 10/3 Introduction to Manifold Learning:
Multidimensional Scaling, Isomap
Cayton, 2005
Tenenbaum, de Silva, Langford, 2000
   
Tu 10/8 Manifold Learning:
Local Linear Embedding, Laplacian Eigenmaps
Roweis & Saul, 2000
Belkin & Niyogi, 2003
   
Th 10/10 Manifold geometry of neural networks Goodfellow et al. 2016, Chapter 14    
Tu 10/15 Reading Day – No Class      
Th 10/17 Variational Autoenconders (VAEs) Kingma and Welling, 2014    
Tu 10/22 Lie groups RGN (Section 4)    
Th 10/24 Lie algebras RGN (Section 5.1)
Parallel parking and Lie brackets
   
Tu 10/29 Lie group actions Applications of Lie groups:
Simard, et al. 1998
Casado and Rubio, 2019
   
Th 10/31 Flow based models Glow
RealNVP
   
Tu 11/5 Election Day – No Class      
Th 11/7 Self-supervised Learning SimCLR    
Tu 11/9 Image-Text Contrastive Learning CLIP    
Th 11/14 Unsupervised Learning + Fisher information metric and Gaussians Fisher Information
Fisher Information Metric
   
Tu 11/19 Natural gradients Pascanu and Bengio, 2014
Score-based Generative Models
   
Th 11/21 Diffusion Models Denoising Diffusion Probabilistic Models    
Tu 11/26 Graph Neural Networks      
Th 11/28 Thanksgiving – No Class      
Tu 12/3 Information theory basics, entropy      
Th 12/5 Kullback-Leibler divergence