Geometry of Data

Schedule

Day Title / Notes Reading Homework
Mo 1/12 Introduction    
We 1/14 Topology Basics Riemannian Geometry Notes (Section 1)  
Mo 1/19 Happy MLK Day! – No Class    
We 1/21 Topology Basics cont. Riemannian Geometry Notes (Section 1) HW 1, Due Wed 2/4
LaTeX source for HW 1 (for reference)
Mo 1/26 Snow Day!    
We 1/28 Topology Basics cont. RGN (Section 1)  
Mo 2/2 Manifold Basics RGN (Section 2)  
We 2/4 Tangent Spaces RGN (Section 2) HW 1 Due
Mo 2/9 Riemannian Geometry RGN (Section 3)  
We 2/11 Riemannian Geometry cont.    
Mo 2/16 Introduction to Shape Manifolds: Kendall’s Shape Space Klingenberg, 2020  
We 2/18 Statistics on Manifolds: Fréchet Mean Pennec, 1999  
Mo 2/23 Statistics on Manifolds: Principal Geodesic Analysis
PCA Refresher
Fletcher 2019, Section 3  
We 2/25 Introduction to Manifold Learning:
Multidimensional Scaling, Isomap
Cayton, 2005
Tenenbaum, de Silva, Langford, 2000
 
Mo 3/2 Spring Break – No Class    
We 3/4 Spring Break – No Class    
Mo 3/9 Manifold Learning:
Local Linear Embedding, Laplacian Eigenmaps
Roweis & Saul, 2000
Belkin & Niyogi, 2003
 
We 3/11 Manifold geometry of neural networks Goodfellow et al. 2016, Chapter 14  
Mo 3/16 Immersions and Submersions    
We 3/18 Lie groups RGN (Section 4)  
Mo 3/23 Lie groups, cont.    
We 3/25 Lie algebras RGN (Section 5.1)
Parallel parking and Lie brackets
 
Mo 3/30 Lie group actions Applications of Lie groups:
Simard, et al. 1998
Casado and Rubio, 2019
 
We 4/1 Information theory basics, entropy    
Mo 4/6 Kullback-Leibler divergence    
We 4/8 Fisher information metric and Gaussians Fisher Information
Fisher Information Metric
 
Mo 4/13 Natural gradients Pascanu and Bengio, 2014  
We 4/15 Variational Autoenconders (VAEs) Kingma and Welling, 2014  
Mo 4/20 Diffusion Models Denoising Diffusion Probabilistic Models
Score-based Generative Models
 
We 4/22 Sampling Methods    
Mo 4/27 Langevin and Hamiltonian Monte Carlo MALA
HMC
Riemannian MALA and HMC