Foundations of Data Analysis

Schedule

Download this: Guide to Math Notation in Jupyter

“M4D” in the reading refers to Mathematical Foundations for Data Analysis, by Jeff Phillips

Day Title / Notes Reading Homework
Th 1/20 Introduction    
Tu 1/25 Basic probability M4D Chapter 1.1 - 1.2  
Th 1/27 Conditional Probability M4D Chapter 1.2 HW 1, Due Tu 2/22
hippocampus data
Tu 2/1 Conditional Probability, cont.
ExampleSolutions.ipynb
   
Th 2/3 Bayes’ Rule M4D 1.6 - 1.8  
Tu 2/8 Classification and Naive Bayes
Probability Cheat Sheet!
Naive Bayes Wikipedia  
Th 2/10 Naive Bayes, cont.
SimpleDataPlots.ipynb
Quiz 1
   
Tu 2/15 Linear Algebra Basics: Vectors M4D Chapter 3
Extra: UCD Notes, Sec 5, 15, 16
 
Th 2/17 K-means Clustering, Nearest Neighbor M4D Chapter 8.1 - 8.3
Extra: M4D Chapter 4
 
Tu 2/22 Maximum Likelihood Estimation   HW 1 Due
Th 2/24 Bayesian Estimation    
Tu 3/1 Hypothesis Testing: Fisher Exact Test Extra: How vaccine trials work HW 2, Due Th 3/24
traffic.csv
cardiac.csv
Th 3/3 Linear Regression M4D Section 5.1  
Tu 3/8 Spring Break – no class    
Th 3/10 Spring Break – no class    
Tu 3/15 Linear Algebra Basics: Matrices    
Th 3/17 Multiple Linear Regression
MultipleLinearRegression.ipynb
Quiz 2
   
Tu 3/22 Multiple Linear Regression cont.    
Th 3/24 Singular Value Decomposition (SVD)
SVD.ipynb
M4D Chapter 7 (through 7.2)
Wikipedia
HW 3, Due Th 4/7
life_expectancy.csv
HW 2 Due
Tu 3/29 Principal Component Analysis M4D Finish Chapter 7
PCA on Wikipedia
 
Th 3/31 Canonical Correlation Analysis
CCA.ipynb
CCA on Wikipedia  
Tu 4/5 Logistic Regression Logistic Regression on Wikipedia  
Th 4/7 Logistic Regression, cont.   HW 4, Due Th 4/21
all-hands.dat
HW 3 Due
Tu 4/12 Intro to Neural Networks: Perceptron
Quiz 3
M4D Chapter 9 - 9.2  
Th 4/14 Backpropagation    
Tu 4/19 Convolution    
Th 4/21 Convolution, cont.   HW 5, Due Wed 5/11
Python code for loading CIFAR-10
HW 4 Due
Tu 4/26 Generative Models    
Th 4/28 AutoEncoders / Variational AutoEncoders    
Tu 5/3 TBA
Quiz 4